More biology for the chemical industry – that is their aim: Dennis Reichert, Robert Kourist and Álvaro Gómez Baraibar (from left to right)
© RUB, Kramer

Biochemistry Combining two catalytic worlds

This is how chemical processes could become more environmentally friendly.

Chemical and biological catalysts tend to require very different reaction conditions, making their combination challenging. Researchers of the Ruhr-Universität Bochum have succeeded in taking this hurdle by using a special gel matrix to compartmentalize both types of catalysts. The results obtained by the Junior Research Group for Microbial Biotechnology headed by Prof Dr Robert Kourist have been reported in the journal “Angewandte Chemie”.

Benefits of enzyme catalysts

“Enzymes are environmentally friendly biological catalysts which are now in the focus of modern synthetic chemistry,” says Robert Kourist. The reason: they operate under mild reaction conditions such as neutral pH and low temperatures. Also, they are very selective and manufacture only the desired product while reducing the amount of by-products.

However, there are a number of reactions, for which no suitable enzymes have been found so far. These reactions have to be performed by chemical catalysts. “A combination of the classic chemical catalysts and enzymes is a step towards more environmentally friendly chemical processes,” says Kourist. “A challenge is to use them in the same reaction due to their different requirements concerning reaction conditions.”

Different reaction spaces

Chemical catalysts are often organo-metallic compounds that require an organic solvent as the reaction media. However, there are only a few enzymes that can remain active in such an environment.

The Bochum-based scientists Dr Álvaro Gómez Baraibar and PhD candidate Dennis Reichert managed to encapsulate an enzyme in a special gel matrix which allowed its use in pure organic solvents. Using this strategy, they achieved the sequential combination of an enzymatic step and a chemical reaction.

Reaction cascade saves time and cost

“The combination of the individual reaction steps in a cascade has more advantages,” says Reichert. It is not necessary to purify the product after each intermediate step because it can be used in the reaction directly as a raw material for the next step. “This saves time and costs,” he explains.

The team demonstrated this new approach with the synthesis of polyphenols. “These natural substances are used predominantly as natural antioxidants,” Kourist says. “They are also at the heart of different studies as new drugs used in cancer therapies.”

Synthetic manufacture of polyphenols is expensive, and the yield is low. The Bochum-based group showed that the cascade reaction can be performed successfully by the application of a gel matrix.

Funding

The Ministry of innovation, science and research of the land of North Rhine-Westphalia funded the work (PtJ-TRI/1411ng006).

Original publication

Álvaro Gómez Baraibar, Dennis Reichert, Carolin Mügge, Svenja Seger, Harald Gröger, Robert Kourist: A sequential one-pot cascade reaction combining an encapsulated decarboxylase with metathesis for the synthesis of bio-based antioxidants, in: Angewandte Chemie International Edition, 2016, DOI: 10.1002/anie.201607777

Press contact

Prof Dr Robert Kourist
Junior Research Group for Microbial Biotechnology
Faculty of Biology and Biotechnology
Ruhr-Universität Bochum
Germany
Phone: +49 234 32 25029
Email: robert.kourist@rub.de

Download high-resolution images
The selected images are downloaded as a ZIP file. The captions and image credits are available in the HTML file after unzipping.
Conditions of use
The images are free to use for members of the press, provided the relevant copyright notice is included. The images may be used solely for press coverage of Ruhr-Universität Bochum that relates solely to the contents of the article that includes the link for the image download. By downloading the images, you receive a simple right of use for one-time reporting. Saving the images for other purposes or further processing of the images that goes beyond adapting them to the respective layout requires an extended right of use. Should you therefore wish to use the photos in any other way, please contact redaktion@ruhr-uni-bochum.de

Unpublished

By

Julia Weiler

Translated by

Álvaro Gómez Baraibar

Share