The team at the Center for Electrochemical Sciences at Ruhr-Universität Bochum: Stefan Barwe, Dr Corina Andronescu, Sandra Möller, Prof Dr Wolfgang Schuhmann and Dr Justus Masa (from left to right). The home-made apparatus shown in the background allows the scientists to simultaneously explore the long-term stability of up to ten catalysts without blocking the infrastructure for other measurements.
© RUB, Kramer

Chemistry Fixation of powder catalysts on electrodes

The envisaged industrial application necessitates catalysts to do their job for years. This new method could assist in achieving it.

Chemists at Ruhr-Universität Bochum have developed a new method to tightly fix catalyst powders on electrode surfaces. Currently, the high physical stress induced on catalyst films by gas evolving reactions hampers the application of powder based catalysts. The developed technique is potentially interesting for hydrogen production by water electrolysis. A team involving Dr Corina Andronescu, Stefan Barwe and Prof Dr Wolfgang Schuhmann from the Center for Electrochemical Sciences reports on this in the international edition of Angewandte Chemie.

„Catalyst syntheses often aim for nanoparticles in order to achieve a high surface area,“ Wolfgang Schuhmann explains. However, tight and stable fixation of nanopowders on electrodes still remains challenging. Suitable catalyst binders exist for electrodes employed in acidic media. Such binders are often deployed in alkaline environments because of the lack of suitable alternatives. However, a major drawback of using these binder materials in alkaline electrolytes is that they are intrinsically unstable and electrically insulating, thus essentially impeding the application of many highly active and potentially industrially interesting powder catalysts.

Polymer transfoms into carbon

The team from Bochum proposes a new method for tight powder catalyst fixation on metal surfaces. They utilized a specific organic polymer, namely polybenzoxazine, which transforms to carbon at temperatures around 500 degree Celsius. The polymer was applied together with the powder catalyst on the surface of a nickel electrode and subsequently heated at high temperatures. Upon thermal treatment, the polymer transformed into a carbon matrix embedding the powder catalyst particles.

The distinctiveness was the choice of the used polymer. Polybenzoxazines are highly thermal stable and exhibit near-zero shrinkage at higher temperatures. In the absence of oxygen, they carbonize giving high residual char.

Easy to produce

„We expect that the presented method might also be applicable at an industrial scale, although this is yet to be validated. However, the necessary procedures are already well established,“ Schuhmann says. In principle, it is the same technique as painting the door of a car. „A mixture of catalyst and polymer could be sprayed on an electrode surface, which is then transferred into an oven,“ the scientist illustrates. The team at the Center for Electrochemical Sciences already tested this at the laboratory scale.

Funding

The German Research Foundation supported the work as part of the cluster of excellence Resolv (EXC1069). Additional funding came from the German Federal Ministry of Education and Research as part of the “Mangan” project (FKZ 03EK3548).

Original publication

Corina Andronescu, Stefan Barwe, Edgar Ventosa, Justus Masa, Eugeniu Vasile, Bharathi Konkena, Sandra Möller, Wolfgang Schuhmann: Powder catalyst fixation for post-electrolysis structural characterisation of NiFe layered double hydroxide based oxygen evolution reaction electrocatalysts, in: Angewandte Chemie International Edition, 2017, DOI: 10.1002/anie.201705385

Press contact

Prof Dr Wolfgang Schuhmann
Analytical Chemistry
Center for Electrochemical Sciences
Faculty of Chemistry and Biochemistry
Ruhr-Universität Bochum
Germany
Phone: +49 234 32 26200
Email: wolfgang.schuhmann@rub.de

Download high-resolution images
The selected images are downloaded as a ZIP file. The captions and image credits are available in the HTML file after unzipping.
Conditions of use
The images are free to use for members of the press, provided the relevant copyright notice is included. The images may be used solely for press coverage of Ruhr-Universität Bochum that relates solely to the contents of the article that includes the link for the image download. By downloading the images, you receive a simple right of use for one-time reporting. Saving the images for other purposes or further processing of the images that goes beyond adapting them to the respective layout requires an extended right of use. Should you therefore wish to use the photos in any other way, please contact redaktion@ruhr-uni-bochum.de

Unpublished

By

Julia Weiler

Translated by

Stefan Barwe, Justus Masa

Share