Chemistry Metallic nanocatalysts imitate the structure of enzymes

In catalysis, nature is sometimes more efficient than artificial systems. Researchers have copied one of the tricks.

An international team of researchers has transferred certain structural characteristics of natural enzymes, which ensure particularly high catalytic activity, to metallic nanoparticles. The desired chemical reaction thus did not take place at the particle surface as usual, but in channels inside the metal particles – and with three times higher catalytic activity. A team from the University of New South Wales, Australia, and Ruhr-Universität Bochum, Germany, reported on these nanozymes in the Journal of the American Chemical Society, published online on 23 September 2018.

Active centres in channels

In the case of enzymes, the active centres, where the chemical reaction takes place, are located inside. The reacting substances have to pass through a channel from the surrounding solution to the active centre, where the spatial structure provides particularly favourable reaction conditions. “It is assumed, for example, that a locally altered pH value prevails in the channels and that the electronic environment in the active centres is also responsible for the efficiency of natural enzymes,” says Professor Wolfgang Schuhmann, head of the Bochum Center for Electrochemical Sciences.

Channels produced in nickel-platinum particles

In order to artificially imitate the enzyme structures, the researchers produced particles of nickel and platinum about ten nanometres in diameter. They then removed the nickel by means of chemical etching, whereby channels were formed. In the final step, they deactivated the active centres on the particle surface. “This enabled us to ensure that only the active centres in the channels participated in the reaction,” explains Patrick Wilde, a doctoral candidate at the Center for Electrochemical Sciences. The researchers compared the catalytic activity of the particles produced in this way with the activity of conventional particles with active centres on the surface.

Three times greater activity

For the test, the team used the oxygen reduction reaction, which, among other things, forms the basis of the operation of fuel cells. Active centres at the end of the channels catalysed the reaction three times more efficiently than active centres on the particle surface.

“The results show the enormous potential of nanozymes,” sums up Dr. Corina Andronescu, a group leader at the Center for Electrochemical Sciences. The researchers now want to extend the concept to other reactions, such as electrocatalytic CO2 reduction, and investigate the principles of increased activity in more detail. “We would like to be able to imitate the way enzymes work even better in the future,” adds Schuhmann. “Ultimately, we hope that the concept will contribute to industrial applications in order to make energy conversion processes more efficient using electricity generated from renewable sources.”

Funding

The study was financially supported by the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology (CE140100036), the ARC Laureate Fellowship programme (FL150100060), a grant from the National Health and Medical Research Council (APP1075628), the German Research Foundation within the Cluster of Excellence Resolv (EXC1069), the German Federal Ministry of Education and Research within the project “Nemezu” (03SF0497B), and the Fonds der Chemischen Industrie (Chemical Industry Fund).

Original publication

Tania M. Benedetti, Corina Andronescu, Soshan Cheong, Patrick Wilde, Johanna Wordsworth, Martin Kientz, Richard D. Tilley, Wolfgang Schuhmann, J. Justin Gooding: Electrocatalytic nanoparticles that mimic the three-dimensional geometric architecture of enzymes: nanozymes, in: Journal of the American Chemical Society, 2018, DOI: 10.1021/jacs.8b08664

Press contact

Prof. Dr. Wolfgang Schuhmann
Analytical Chemistry – Centre for Electrochemistry
Faculty of Chemistry and Biochemistry
Ruhr-Universität Bochum
Germany
Phone: +49 234 32 26200
Email: wolfgang.schuhmann@rub.de

Download high-resolution images
The selected images are downloaded as a ZIP file. The captions and image credits are available in the HTML file after unzipping.
Conditions of use
The images are free to use for members of the press, provided the relevant copyright notice is included. The images may be used solely for press coverage of Ruhr-Universität Bochum that relates solely to the contents of the article that includes the link for the image download. By downloading the images, you receive a simple right of use for one-time reporting. Saving the images for other purposes or further processing of the images that goes beyond adapting them to the respective layout requires an extended right of use. Should you therefore wish to use the photos in any other way, please contact redaktion@ruhr-uni-bochum.de

Published

Thursday
08 November 2018
10:45 am

By

Julia Weiler

Translated by

Lund Languages

Share