In order to facilitate analysis in living cells, the team is planning to develop a combined instrument in the next step.
© RUB, Kramer

Microscopy Simultaneous monitoring of surfaces and protein distribution in cells

The combination of two high-resolution methods produces new insights into the cells’ mode of operation.

In a first proof-of-concept study, researchers at Ruhr-Universität Bochum (RUB) have combined two microscopy methods that render both a cell’s surface and the distribution of a protein in the cell visible, at a resolution in the nanometre range. The method can be used for living cells. It might for example help analyse how cancer metastases are formed or assess the efficacy of specific drugs. The researchers from the nanoscopy workgroup at Rubion, the Central Unit for Ionbeams and Radionuclides at RUB, reported their findings in the renowned journal ACS Nano on May 23, 2018.

A first step

Significantly smaller than 250 nanometres, protein complexes cannot be depicted in detail using light-microscopy techniques. In order to find a way in, the RUB workgroup combined stimulated emission depletion microscopy (STED) with scanning ion conductance microscopy (SICM).

“STED microscopy enables us to analyse the distribution of proteins in high resolution. SICM facilitates high-resolution probing of the cell membrane. Accordingly, we have been able to link the distribution of the cellular protein actin with the nanostructure of the cell membrane,” explains Philipp Hagemann, PhD researcher in the workgroup. “Our results constitute a first step towards high-res analysis of the surface structure, i.e. the biochemical organisation of the cell and its surrounding membrane,” elaborates Dr Patrick Happel, head of the nanoscopy workgroup.

Understanding the role of the cell membrane

The cell membrane is a fatty layer that encloses each cell, thus separating it from its surroundings. In order to communicate with their environment, cells have a number of different proteins that are embedded in the cell membrane and convey external stimuli into the interior of the cell. “The way proteins are organised in the cell membrane, the way their position changes, and the way those changes are orchestrated has not yet been fully understood,” says Happel. The proteins in the cell membrane as well as the cell membrane itself are significant factors in this process, as cells alter their position during wound healing, during development, and also while cancer metastases are formed. Researchers refer to this process as migration.

The authors Philipp Hagemann, Astrid Gesper und Patrick Happel (from the left)
© RUB, Kramer

Even though cell migration differs between different cell types, one common aspect is an expansion of the cell membrane into the direction of movement. Within the organism, migrating cells have to move through extremely narrow gaps between other cells. This is only possible if the cell is considerably deformed, and if adhesion complexes are formed at the front edge of the cell and are detached at the trailing edge. The interplay of these biochemical and biophysical processes has as yet been barely understood on the molecular level, as no method exists capable of monitoring this dynamic process in high resolution over an extended period of time.

Two-part device planned

“We have recorded the data successively with different devices. Thus, we were able to demonstrate that our method makes novel analyses possible,” explains Astrid Gesper, PhD researcher in the workgroup.

In order to facilitate analysis in living cells, the team is planning to develop a combined instrument in the next step. “The combination of both methods will render the transport processes visible in detail – which also plays a crucial role for targeted application of drugs via nanoparticles,” concludes Patrick Happel.

Funding

The Volkswagen Foundation has funded the study under the umbrella of the project “Funtionalized Nanodiamonds for Biomedical Research and Therapy ”.

Original publication

Philipp Hagemann, Astrid Gesper, Patrick Happel: Correlative stimulated emission depletion and scanning ion conductance microscopy, in: ACS Nano, 2018, DOI: 10.1021/acsnano.8b01731

Press contact

Dr Patrick Happel
Rubion, Central Unit for Ionbeams and Radionuclides
Ruhr-Universität Bochum
Germany
Phone: +49 234 32 24245
Email: patrick.happel@rub.de

Download high-resolution images
The selected images are downloaded as a ZIP file. The captions and image credits are available in the HTML file after unzipping.
Conditions of use
The images are free to use for members of the press, provided the relevant copyright notice is included. The images may be used solely for press coverage of Ruhr-Universität Bochum that relates solely to the contents of the article that includes the link for the image download. By downloading the images, you receive a simple right of use for one-time reporting. Saving the images for other purposes or further processing of the images that goes beyond adapting them to the respective layout requires an extended right of use. Should you therefore wish to use the photos in any other way, please contact redaktion@ruhr-uni-bochum.de

Published

Monday
28 May 2018
12:36 pm

By

Meike Drießen

Translated by

Donata Zuber

Share