Dennis Eickelbeck and Katharina Spoida develop new optogenetic tools at the Ruhr-Universität Bochum.
© RUB, Kramer

Optogenetics Switching signalling pathways on and off

Blue on, yellow off: using different-coloured light, researchers are able to switch signalling pathways in the brain on and off.

Researchers in Bochum have utilised light-sensitive proteins from nerve cells of the eye – so-called melanopsins – to switch on specific signalling pathways in brain cells with high temporal precision. Depending on what kind of melanopsin the researchers used, signalling pathways were switched on either transiently or sustained. In mammals, the protein typically regulates the circadian rhythm.

Dr Katharina Spoida, Dennis Eickelbeck, Prof Dr Stefan Herlitze and Dr Olivia Masseck from the Department of General Zoology and Neurobiology at the Ruhr-Universität Bochum (RUB), together with other colleagues from Bochum and researchers from the University of Osnabrück report in the journal “Current Biology”.

Comparison: melanopsin of mice and men

The researchers describe, for example, that melanopsins of mice and of men respond differently to light stimulation. Short blue light pulses activate mouse melanopsin permanently, but human melanopsin only temporarily. Both proteins can be switched off with yellow light.

“These light-sensitive proteins are the ideal basis for the development of optogenetic tools,” says Dennis Eickelbeck. In optogenetics, researchers make use of genetic manipulation to couple light-sensitive proteins to other proteins, thus generating receptors that can be controlled by light, for example.

Decoding G-protein signalling pathways

In the next step, the RUB researchers wish to develop G-protein-coupled receptors that can be activated by light. These receptors control a number of functions in the body. Which signalling pathway is switched on in the cell is determined by whether a G-protein is activated transiently or sustained. Changes to the G-proteins’ temporal activation patterns may result in serious diseases, for example obesity or cardio-vascular diseases.

Insights into the complex serotonin system

By controlling selected individual signalling pathways using optogenetic methods, the role they play in the healthy organism can be determined. Researchers may also be able to find out which signalling pathways affect the occurrence of certain diseases.

“In follow-up studies, we intend to couple various melanopsins to serotonin receptors and analyse in greater detail the way diseases are triggered by disturbances of the temporal sequence of G-protein signals,” reports Katharina Spoida, who was in charge of the current study, together with Dennis Eickelbeck.

Original publication

Spoida et al. (2016): Melanopsin variants as intrinsic optogenetic on and off switches for transient versus sustained activation of G Protein pathways, Current Biology, DOI: 10.1016/j.cub.2016.03.007

Press contact

Prof Dr Stefan Herlitze
Department of General Zoology and Neurobiology
Faculty of Biology and Biotechnology
Ruhr-Universität Bochum
Germany
Phone: +49 234 32 24363
Email: stefan.herlitze@rub.de

Download high-resolution images
The selected images are downloaded as a ZIP file. The captions and image credits are available in the HTML file after unzipping.
Conditions of use
The images are free to use for members of the press, provided the relevant copyright notice is included. The images may be used solely for press coverage of Ruhr-Universität Bochum that relates solely to the contents of the article that includes the link for the image download. By downloading the images, you receive a simple right of use for one-time reporting. Saving the images for other purposes or further processing of the images that goes beyond adapting them to the respective layout requires an extended right of use. Should you therefore wish to use the photos in any other way, please contact redaktion@ruhr-uni-bochum.de

Unpublished

By

Julia Weiler

Share