Green algae possess an enzyme for producing hydrogen, called hydrogenase. Together with his colleagues, Thomas Happe engineers such enzymes in the test tube.
© RUB, Marquard

Synthesis of hydrogen
When enzymes assemble themselves in the test tube

Hydrogen is considered as a potential energy carrier of the future. However, its mass production remains problematic. Bochum-based researchers have found a new approach for a process suited for industrial applications.

Researchers from Bochum have engineered a hydrogen-producing enzyme in the test tube that works as efficiently as the original. The protein – a so-called hydrogenase from green algae – is made up of a protein scaffold and a cofactor. The latter is the reaction centre where the substances that react with each other dock.

When the researchers added various chemically synthesised substances to the protein scaffold, the cofactor spontaneously assembled.

Without expensive platinum

The team headed by Dr Jens Noth and Prof Dr Thomas Happe at the Ruhr-Universität Bochum report the results in the journal “Angewandte Chemie”. The researchers intend to lay the foundation for artificial, hydrogen-producing enzymes that will one day be manufactured on an industrial level.

Hydrogenases are very efficient producers of the potential energy carrier and can do without the expensive precious metal platinum which is currently required for hydrogen synthesis.

Replacing sulphur by selenium

In nature, the hydrogenase cofactor is made up of iron and sulphur atoms. They are bonded in the protein in a unique manner. In the artificial variant, the researchers replaced the sulphur atoms by selenium atoms, which have more than twice as much mass. Using this method, they marked the enzyme’s cofactor and were able to analyse it in more detail.

The tests revealed that the artificial enzyme variant has the same biochemical properties as the original that occurs in nature. With the aid of other biophysical methods, the group intends to figure out the reaction mechanism in more detail that is used by the hydrogenase for the production of hydrogen.

Cooperation partners

For the purpose of the study, the research group Photobiotechnology headed by Thomas Happe cooperated with the team of Dr Ulf-Peter Apfel at the Chair of Inorganic Chemistry and the biophysical groups of Prof Dr Klaus Gerwert and Prof Dr Eckhard Hofmann.

Funding

The German Research Foundation financed the project in the course of the German-Israeli project cooperation “Nanoengineered optoelectronics with biomaterials and bioinspired assemblies” as well as under the umbrella of the Cluster of Excellence Resolv (EXC1069) and an Emmy Noether Grant (AP242/2-1). Additional funding was supplied by the Volkswagen Foundation (LigH2t) and “Verband der Chemischen Industrie” (Liebig Grant).

Original publication

Jens Noth et al.: [FeFe]-hydrogenase with chalcogenide substitutions at the H-cluster maintains full H2 evolution activity, in: Angewandte Chemie, 2016, DOI: 10.1002/ange.201511896

Press contact

Prof Dr Thomas Happe
Research group Photobiotechnology
Faculty of Biology and Biotechnology
Ruhr-Universität Bochum
Germany
Phone: +49 234 32 27026
E-Mail: thomas.happe@rub.de

Download high-resolution images
The selected images are downloaded as a ZIP file. The captions and image credits are available in the HTML file after unzipping.
Conditions of use
The images are free to use for members of the press, provided the relevant copyright notice is included. The images may be used solely for press coverage of Ruhr-Universität Bochum that relates solely to the contents of the article that includes the link for the image download. By downloading the images, you receive a simple right of use for one-time reporting. Saving the images for other purposes or further processing of the images that goes beyond adapting them to the respective layout requires an extended right of use. Should you therefore wish to use the photos in any other way, please contact redaktion@ruhr-uni-bochum.de

Unpublished

By

Julia Weiler

Share