Mit einem Modellauto funktioniert der neue Kraftstoff seines Teams schon: Lukas Gooßen
© RUB, Kramer

Innovative technique Researchers produce biofuel for conventional diesel engines

Up to now, pure biodiesel has caused problems in conventional engines. This could change.

In accordance with an EU directive, conventional automotive diesel is supplemented with seven percent biodiesel. This proportion is set to rise to ten percent by 2020. However, this presents a significant technical challenge: biodiesel vaporises at higher temperatures, which can lead to problems with electronic fuel injection systems and particulate filters. Researchers from Kaiserslautern, Bochum, and Rostock have developed a method for producing a petroleum diesel-like fuel from conventional biodiesel at low temperatures. The new biofuel fulfils the current EU and US requirements. It can be used undiluted in modern diesel engines or mixed in any ratio with petroleum diesel. The researchers present their work in the prestigious journal Science Advances.

Pure biodiesel can cause problems

In Europe, biodiesel is largely produced from rapeseed oil. Chemically, it comprises long-chain hydrocarbon compounds, known as fatty acid methyl esters. It has different properties to diesel obtained from mineral oil. For instance, the boiling point is much higher. This means biodiesel tends to vaporise only partially, and to form deposits on engine components. This makes pure biodiesel unsuitable as a fuel for standard engines. Injection pumps, seals, and pipes would need to be constructed differently. “Cars fuelled with pure biodiesel require specially designed engines,” explains Dr Lukas Gooßen.

In collaboration with chemists Kai Pfister and Sabrina Baader from the collaborative research centre 3-MET at the University of Kaiserslautern, Gooßen has developed an innovative technique for treating biodiesel. “With virtually no energy input, we convert a mixture of plant-derived fatty esters and bio-ethylene, another chemical compound, into fuel,” the professor says. “This can be combusted undiluted in modern diesel engines.”

Chemical properties precisely adjustable

The particular advantage of this new technique is that the researchers are able to precisely adjust the chemical properties of the mixture. “We combine two catalytic methods to transform the long-chain fatty esters into a mixture of compounds with shorter chains,” he elaborates. This process changes the ignition and combustion properties of the biodiesel. Combustion starts at lower temperatures. “We are thus able to adjust our biodiesel to the applicable standards for petroleum diesel,” Gooßen adds. Moreover, the process is environmentally friendly: it neither requires solvents, nor produces waste.

The two methods were synchronised with each other using mathematical simulations by Mathias Baader from the University of Kaiserslautern. Silvia Berndt at the University of Rostock proved that the mixture complies with the strict standard (EN 590) for modern diesel engines. In preliminary test runs, Kai Pfister has managed to demonstrate that this new diesel fuel can actually power a model car.

Funding

The research was carried out within the collaborative research centre 3-MET (SFB/TRR 88 “Cooperative Effects in Homo and Heterometallic Complexes”) at the University of Kaiserslautern and the cluster of excellence Resolv (Ruhr Explores Solvation) at Ruhr-Universität Bochum. It was also supported by the German Federal Environmental Foundation (DBU) and the Carl Zeiss Foundation.

About the persons

Gooßen holds the Evonik Chair of Organic Chemistry at Ruhr-Universität Bochum. Until last year, he was professor at the University of Kaiserslautern, where the new technology was developed. His graduate students Kai Pfister and Sabrina Baader have successfully completed their doctoral work and are now pursuing careers in industry.

Original publication

Kai F. Pfister, Sabrina Baader, Mathias Baader, Silvia Berndt, Lukas J. Goossen: Biofuel by isomerizing metathesis of rapeseed oil esters with (bio)ethylene for use in contemporary diesel engines, in: Science Advances, 2017, DOI: 10.1126/sciadv.1602624

Press contact

Prof Dr Lukas Gooßen
Organic Chemistry I
Faculty of Chemistry and Biochemistry
Ruhr-Universität Bochum
Germany
Phone: +49 234 32 19075
Email: lukas.goossen@rub.de

Dr Marc Prosenc
3MET Office
University of Kaiserslautern
Germany
Phone: +49 631 205 5185
Email: prosenc@chemie.uni-kl.de

Download high-resolution images
The selected images are downloaded as a ZIP file. The captions and image credits are available in the HTML file after unzipping.
Conditions of use
The images are free to use for members of the press, provided the relevant copyright notice is included. The images may be used solely for press coverage of Ruhr-Universität Bochum that relates solely to the contents of the article that includes the link for the image download. By downloading the images, you receive a simple right of use for one-time reporting. Saving the images for other purposes or further processing of the images that goes beyond adapting them to the respective layout requires an extended right of use. Should you therefore wish to use the photos in any other way, please contact redaktion@ruhr-uni-bochum.de

Unpublished

By

Julia Weiler

Translated by

University of Kaiserslautern

Share