Thomas Happe (left) and Oliver Lampret aim at understanding the workings of hydrogen producing enzymes in detail.
© RUB, Kramer

Biology How nature builds hydrogen-producing enzymes

The heart of the biological catalyst is only introduced during the last step. The process is complex.

A team from Ruhr-Universität Bochum and the University of Oxford has discovered how hydrogen-producing enzymes, called hydrogenases, are activated during their biosynthesis. They showed how the cofactor – part of the active centre and also the heart of the enzyme – is introduced inside.

Hydrogenases are of biotechnological interest as they are able to efficiently produce hydrogen. “In order to optimise them for an industrial application, we first need to understand the process of how the protein shell takes up and activates the chemical cofactor,” says Professor Thomas Happe. A team led by Oliver Lampret and Thomas Happe from the Bochum-based Photobiotechnology Research Group published the results in the journal “Proceedings of the National Academy of Sciences”, PNAS for short, on 23 July 2019.

The researchers investigated the subgroup of [FeFe]-hydrogenases, which are the most efficient hydrogen producers. In nature, they can be found in green algae. Within their protein scaffold, the enzymes have an active centre, the so-called H-cluster, where the hydrogen is produced. It is comprised of two structural elements: a cluster containing four iron and four sulphur atoms, and the catalytic cofactor, which consists of two iron and two sulphur atoms. “This cofactor is the linchpin of the enzyme,” explains Oliver Lampret.

Final step of biosynthesis

In nature, the cofactor is subsequently incorporated into the enzyme following the biosynthesis of the protein scaffold – a highly complex process. Only then is the hydrogenase catalytically active. The researchers clarified the precise sequence of the process using protein engineering, protein film electrochemistry and infrared spectroscopy.

The team showed that the negatively charged cofactor is specifically transported through a positively charged maturation channel into the interior of the enzyme before it is firmly anchored into the protein shell. Particularly flexible structural elements act as hinges here, ensuring that the protein folds differently and firmly envelopes and protects the integrated cofactor. The interaction of protein environment and cofactor is essential in order to stabilise the cofactor in its catalytic form.

“We assume that not only do [FeFe]-hydrogenases obtain their cofactor in this way but that the mechanism also occurs in other metalliferous enzymes,” says Happe.

Funding

The work was supported by the German Research Foundation as part of the Cluster of Excellence Resolv (EXC 2033, project number 390677874) and the Research Training Group GRK 2341 “Microbial Substrate Conversion” and by the Volkswagen Foundation (93412).

Original publication

Oliver Lampret et al.: The final steps of [FeFe]-hydrogenase maturation, in: Proceedings of the National Academy of Sciences, 2019, DOI: 10.1073/pnas.1908121116

Press contact

Prof. Dr. Thomas Happe
Photobiotechnology Research Group
Faculty of Biology and Biotechnology
Ruhr-Universität Bochum
Germany
Phone: +49 234 32 27026
Email: thomas.happe@rub.de

Download high-resolution images
The selected images are downloaded as a ZIP file. The captions and image credits are available in the HTML file after unzipping.
Conditions of use
The images are free to use for members of the press, provided the relevant copyright notice is included. The images may be used solely for press coverage of Ruhr-Universität Bochum that relates solely to the contents of the article that includes the link for the image download. By downloading the images, you receive a simple right of use for one-time reporting. Saving the images for other purposes or further processing of the images that goes beyond adapting them to the respective layout requires an extended right of use. Should you therefore wish to use the photos in any other way, please contact redaktion@ruhr-uni-bochum.de

Published

Wednesday
24 July 2019
12:58 pm

By

Julia Weiler

Translated by

Lund Languages

Share