Chemistry Determining the activity of noble-metal-free catalyst particles

Noble-metal-free nanoparticles could serve as catalysts for the production of hydrogen from water. Because they are so small, their properties are difficult to determine.

Chemists have developed a new method with which they can characterise individual noble-metal-free nanoparticle catalysts. The particles could be a cheap alternative to precious metal catalysts for obtaining hydrogen from water by means of electrolysis. “In order to develop effective nanoparticles, we need to understand how the structure and activity of individual particles or small particle groups are related to each other,” says Professor Wolfgang Schuhmann of the Center for Electrochemistry at Ruhr-Universität Bochum. He describes a new measurement method for this purpose together with the researchers Tsvetan Tarnev and Dr. Harshitha Barike Ayappa from Bochum and Professor Corina Andronescu from the University of Duisburg-Essen and other colleagues in the journal “Angewandte Chemie” of 1 October 2019.

So far, there are few techniques available to measure the catalytic activity of individual or a few nanoparticles. “The currents that have to be measured are extremely small, and one has to find single or few nanoparticles in order to measure them reproducibly,” explains Schuhmann. The research team, which cooperates within the University Alliance Ruhr, showed that such analyses are also possible with high throughput – namely with scanning electrochemical cell microscopy.

Development of a new reference system

Until now, the method had not been used for this purpose because the nanoparticles had to be tested under demanding chemical conditions and thus large measurement inaccuracies occurred. This made a reliable interpretation of the results impossible. In their current work, the researchers developed a new reference system for scanning electrochemical cell microscopy. By cleverly using a stable internal standard, they eliminated the measurement inaccuracies and enabled long-lasting measurements under the given conditions with high throughput.

Analysis of self-made nanoparticles

The researchers produced carbon particles with nitrogen and cobalt inclusions on glassy carbon, the particles being present on the surface either individually or in groups of a few particles. In a single experiment, they were able to use scanning electrochemical cell microscopy to determine the electrochemical activity of all these individual particles or particle groups.

The particles catalysed the so-called oxygen evolution reaction. The electrolysis of water produces hydrogen and oxygen – the limiting step in this process is currently the partial reaction in which oxygen is evolved; more efficient catalysts for this partial reaction would facilitate the production of hydrogen.

University Alliance Ruhr

Since 2007, the three Ruhr region universities have been engaged in close strategic cooperation under the umbrella of the University Alliance Ruhr (UA Ruhr). By pooling their strengths, the partner institutions are systematically expanding their output. There are now over 100 cooperations in the fields of research, teaching and administration, all built on the principle of being “better together”. With over 120,000 students and almost 1,300 professors, the UA Ruhr is one of the largest and best-performing hubs for science and technology in Germany.

Funding

The German Research Foundation funded the research work within the framework of the Collaborative Research Centre/Transregio 247 (project number 388390466) and the Cluster of Excellence Ruhr Explores Solvation, Resolv, (EXC 2033, project number 390677874). Harshitha Barike Aiyappa received a postdoctoral fellowship from the Alexander von Humboldt Foundation.

Original publication

Tsvetan Tarnev, Harshitha Barike Aiyappa, Alexander Botz, Thomas Erichsen, Andrzej Ernst,
Corina Andronescu, Wolfgang Schuhmann: Scanning electrochemical cell microscopy investigation of single ZIF‐derived nanocomposite particles as electrocatalysts for oxygen evolution in alkaline media, in: Angewandte Chemie International Edition, 2019, DOI: 10.1002/anie.201908021

Press contact

Prof. Dr. Wolfgang Schuhmann
Analytical Chemistry – Centre for Electrochemistry
Faculty of Chemistry and Biochemistry
Ruhr-Universität Bochum
Germany
Phone: +49 234 32 26200
Email: wolfgang.schuhmann@rub.de

Download high-resolution images
The selected images are downloaded as a ZIP file. The captions and image credits are available in the HTML file after unzipping.
Conditions of use
The images are free to use for members of the press, provided the relevant copyright notice is included. The images may be used solely for press coverage of Ruhr-Universität Bochum that relates solely to the contents of the article that includes the link for the image download. By downloading the images, you receive a simple right of use for one-time reporting. Saving the images for other purposes or further processing of the images that goes beyond adapting them to the respective layout requires an extended right of use. Should you therefore wish to use the photos in any other way, please contact redaktion@ruhr-uni-bochum.de

Published

Friday
04 October 2019
8:48 am

By

Julia Weiler

Translated by

Patrick Wilde

Share