Microbiology How diarrhoea pathogens switch into attack mode at body temperature

Bacteria don’t produce disease-causing substances until they have infected a warm body. To this end, they use a special thermometer. Researchers have now analysed the exact mechanism.

Many bacterial pathogens excrete toxins as soon as they have entered the host in order to suppress its immune response. Researchers at Ruhr-Universität Bochum (RUB) have analysed what happens on the molecular level when the diarrhoea pathogen Yersinia pseudotuberculosis switches into attack mode. To this end, they examined so-called RNA thermometers, which signal to the bacteria whether they are in the host. In collaboration with colleagues from the Helmholtz Institute for Infection Research in Braunschweig, they also showed that bacteria with deactivated RNA thermometers can no longer trigger an infection. The journal Plos Pathogens reports about the study online on 17. january 2020.

RNA thermometer melts at 37 degrees Celcius

“We knew from previous studies that Yersinia bacteria are very sensitive to temperature changes and recognise that they are in their host on the basis of body temperature,” says Professor Franz Narberhaus from the RUB Chair of Microbial Biology. RNA thermometers are responsible for temperature measurement. They are sections in the messenger RNA of many genes that contain the blueprint for disease-causing proteins.

At low temperatures, i.e. outside the host, RNA thermometers prevent the RNA from being read and translated into proteins. Only after successful infection of the warm-blooded host, i.e. at a temperature of around 37 degrees Celsius, do the RNA structures melt. They can then be written into proteins that have a harmful effect on the host. In the current publication, the scientists describe the underlying melting mechanism of the RNA thermometer for one of the toxins of Yersinia pseudotuberculosis, namely the CnfY-Toxin.

Bacteria with non-functional thermometers do not cause illness

PhD student Christian Twittenhoff from Bochum used isolated cell components of the diarrhoea pathogen to show which structure the RNA thermometer for the CnfY toxin assumes and where it melts. The biologist created a model that documents how the thermometer opens. It also shows how the ribosome – the cell component on which the messenger RNA is translated into a protein – docks to the messenger RNA.

In cooperation with the group headed by Professor Petra Dersch, formerly at Helmholtz Institute in Braunschweig, currently at the University of Münster, the researchers moreover demonstrated the role of the RNA thermometer in the disease process. They infected mice with Yersinia bacteria that either had functioning RNA thermometers or inactivated RNA thermometers that could not melt at 37 degrees Celsius. The bacterial strains with modified RNA thermometers were not able to make mice ill. “The results have shown how important very short regulatory RNA sequences can be for the successful course of infection of a bacterium,” concludes Christian Twittenhoff, lead author of the study.

Similar mechanisms suspected in other bacteria

Christian Twittenhoff compared the gene of the CnfY toxin with toxin genes of other pathogens using bioinformatic methods. The analysis suggests that other toxin genes might also be regulated by RNA thermometers. “Even though the sequences are very different, we are able to predict which RNA structures are likely to act as thermometers,” he explains.

“RNA thermometers function via a very simple mechanism, which has probably proved its efficacy in the course of evolution and has therefore developed many times and independently of each other,” assumes Franz Narberhaus. In principle, it is possible to prevent bacterial infection by preventing the melting of such RNA structures. “However, we don’t yet know any substances that freeze RNA thermometers in the closed state,” continues Narberhaus.

About the pathogen

The diarrhoea pathogen Yersinia pseudotuberculosis is closely related to the plague pathogen Yersinia pestis. The bacterium is transmitted via contaminated food. As soon as it arrives in the intestine of the warm-blooded host, it secretes the so-called CnfY toxin, which triggers acute inflammatory reactions and increases the effect of other pathogenic substances.

Funding

The German Research Foundation funded the project under the funding code NA 240/10-2.

Original publication

Christian Twittenhoff, Ann Kathrin Heroven, Sabrina Mühlen, Petra Dersch, Franz Narberhaus: An RNA thermometer dictates production of a secreted bacterial toxin, in: Plos Pathogens, 2019, DOI: 10.1371/journal.ppat.1008184

Press contact

Prof. Dr. Franz Narberhaus
Chair of Microbial Biology
Faculty of Biology and Biotechnology
Ruhr-Universität Bochum
Germany
Phone: +49 234 32 23100
Email: franz.narberhaus@rub.de

Download high-resolution images
Der Download der gewählten Bilder erfolgt als ZIP-Datei. Bildzeilen und Bildnachweise finden Sie nach dem Entpacken in der enthaltenen HTML-Datei.
Nutzungsbedingungen
Die Verwendung der Bilder ist unter Angabe des entsprechenden Copyrights für die Presse honorarfrei. Die Bilder dürfen ausschließlich für eine Berichterstattung mit Bezug zur Ruhr-Universität Bochum verwendet werden, die sich ausschließlich auf die Inhalte des Artikels bezieht, der den Link zum Bilderdownload enthält. Mit dem Download erhalten Sie ein einfaches Nutzungsrecht zur einmaligen Berichterstattung. Eine weitergehende Bearbeitung, die über das Anpassen an das jeweilige Layout hinausgeht, oder eine Speicherung der Bilder für weitere Zwecke, erfordert eine Erweiterung des Nutzungsrechts. Sollten Sie die Fotos daher auf andere Weise verwenden wollen, kontaktieren Sie bitte redaktion@ruhr-uni-bochum.de

Published

Monday
20 January 2020
9:20 am

By

Julia Weiler (jwe)

Translated by

Donata Zuber

Share