In Kooperation mit zahlreichen Partnerinstitutionen gelang der Nachweis, dass Darmbakterien den Verlauf der Multiplen Sklerose beeinflussen.
© RUB, Kramer

Neurology Diet has an impact on the multiple sclerosis disease course

Intestinal bacteria operate as a self-sufficient organ: they influence the immune system and the brain via their metabolites.

The short-chain fatty acid propionic acid influences the intestine-mediated immune regulation in people with multiple sclerosis (MS). This has been shown by a team from the Department of Neurology of Ruhr-Universität Bochum (RUB) at St. Josef-Hospital in an international study headed by Professor Aiden Haghikia. The application of propionic acid in addition to MS medication reduced the relapse rate and the risk of disability progression in the long term. Moreover, initial Magnetic Resonance Imaging studies indicated that propionic acid may reduce brain atrophy as a sign of neuronal cell death. The results were published in the journal “Cell” from 10 March 2020.

Self-sufficient organ within the gut

The gut microbiome, i.e. the entire bacterial colonisation of the intestine, plays an important role not only for the healthy organism, but its association with chronic diseases, such as multiple sclerosis has been recently appreciated. Within the gut, the interaction between dietary components, microbiota, their metabolites, and the immune system takes place in the intestinal wall. “This is how intestinal bacteria can directly and indirectly affect anatomically distant structures such as the brain,” explains Aiden Haghikia. “Accordingly, the gut microbiome acts like an self-sufficient endocrine organ that interacts with the environment.”

Short chain fatty acids can suppress inflammatory reactions

In the current study, the researchers successfully transferred the results previously shown in the cell culture dish and the experimental model to their MS patients: short-chain fatty acids such as propionic acid or its salt propionate increased the differentiation and function of regulatory T cells in the gut. “These cells stop excessive inflammatory processes and reduce auto-immune cells in autoimmune diseases like MS,” says Professor Ralf Gold, Director of the Department of Neurology at St. Josef Hospital.

Das Autorenteam: Allaeddin Bagh, Sarah Hirschberg, Felix Wullenkord, Riccardo Troisi, Charlotta Coutourier, Barbara Gisevius, Katrin Peters, Aiden Haghikia (erste Reihe von links), Alexander Duscha, Johannes Kaisler, Andrea Huschens, Daniel Zent, Carmen Winnesberg, Tobias Hegelmaier (zweite Reihe von links)
© RUB, Kramer

In their study, the researchers showed that the microbiome composition is altered in MS patients. Moreover, they demonstrated a deficiency of propionic acid in the feces and serum of MS patients, which was most pronounced in the earliest phases of the disease. These data were obtained in collaboration with the Max Delbrück Center Berlin and the Institute of Nutritional Sciences at Martin Luther University Halle-Wittenberg.

Intestinal bacteria and the power plants of the cells of paramount importance

In collaboration with researchers from the Bar-Ilan University in Israel, who had developed an intestinal model for the functional analysis of the microbiome, it emerged that propionate associated changes of the gut microbiome play a crucial role in the differentiation of regulatory cells. The increased function of these cells was due to their improved energy utilisation through an altered function of the mitochondria, as the research team demonstrated in collaboration with the Molecular Cell Biology research group at the RUB Faculty of Medicine.

The intestine as target for future therapeutic approaches

The short-chain fatty acids represent only a fraction of the metabolites of intestinal bacteria that are generated from the diet. “Further research into this largely unknown organ and the knowledge gained from it will enable us to develop innovative dietary measures to complement the known therapeutics in the future,” says Aiden Haghikia.

Cooperation partners

The study was conducted in collaboration with research teams at the universities of Berlin (Max Delbrück Center), Düsseldorf (Proteomics), Erlangen (Rheumatology), Freiburg (Neuropathology), Halle-Wittenberg (Nutritional Science), Hattingen (Neurology and Complementary Medicine), Copenhagen (Denmark), Leipzig, Los Angeles (USA), Ramat Gan (Israel) and Regensburg (Neurology).

Funding

The research was co-funded by the German Research Foundation as part of the Collaborative Research Centre/Transregio 128 and the Collaborative Research Centre 1365, the RUB Faculty of Medicine in the Forum Programme, Rose-Stiftung, the RUB Centre for Protein Diagnostics Prodi, Deutsche Multiple-Sklerose-Gesellschaft in NRW, the Ministry of Culture and Science in North Rhine-Westphalia (INST 213/840-1 FUGG), the Israel Science Foundation (1384/18) as well as the Federal Ministry of Education and Research (FKZ 031 A 534A).

Original publication

Alexander Duscha et al.: Propionic acid shapes multiple sclerosis disease course by immunomodulatory mechanism, in: Cell, 2020, DOI: 10.1016/j.cell.2020.02.035

Press contact

Prof. Dr. Aiden Haghikia
St. Josef-Hospital Bochum
Neurologic Clinic at Ruhr-Universität Bochum
Germany
Phone: +49 234 509 2422
Email: aiden.haghikia@rub.de

Download high-resolution images
The selected images are downloaded as a ZIP file. The captions and image credits are available in the HTML file after unzipping.
Conditions of use
The images are free to use for members of the press, provided the relevant copyright notice is included. The images may be used solely for press coverage of Ruhr-Universität Bochum that relates solely to the contents of the article that includes the link for the image download. By downloading the images, you receive a simple right of use for one-time reporting. Saving the images for other purposes or further processing of the images that goes beyond adapting them to the respective layout requires an extended right of use. Should you therefore wish to use the photos in any other way, please contact redaktion@ruhr-uni-bochum.de

Published

Wednesday
11 March 2020
10:01 am

By

Meike Drießen (md)

Translated by

Donata Zuber

Share