Jump to navigation

Logo RUB
  • Corona-Infos
  • Studium
  • Forschung
  • Transfer
  • News
  • Über uns
  • Einrichtungen
 
MENÜ
  • RUB-STARTSEITE
  • News
  • Wissenschaft
  • Studium
  • Transfer
  • Leute
  • Hochschulpolitik
  • Kultur und Freizeit
  • Vermischtes
  • Servicemeldungen
  • Serien
  • Dossiers
  • Bildergalerien
  • Presseinformationen
    • Abonnieren
  • RUB in den Medien
    • Abonnieren
  • Rubens
    • Printarchiv
  • Rubin
    • Abonnieren
    • Printarchiv
  • Archiv
  • English
    • Press releases
  • Redaktion
  • Serviceangebote
    • Für RUB-Mitglieder
    • Für Pressevertreter
    • Sonstige Services
    • Social Media
  • Aktionen

Newsportal - Ruhr-Universität Bochum

Press release
  • Toni Luise Meister is part of the RUB Virology team.
    © Privat
  • Ferdinand Zettl and Gert Zimmer of the IVI in front of an image of the test developed by them with green fluorescent cells.
    © FSVO/Renate Boss
  • Stephanie Pfänder formerly worked in Bern, now in Bochum.
    © RUB, Marquard
  /  
Virology

Rapid test for the determination of antibodies against Sars-Cov-2

A Swiss-German team presents a test that determines the amount of neutralising antibodies within a short period of time.

To determine immunity to Sars-Cov-2 and the effectiveness of potential vaccines, the amount of neutralising antibodies in the blood of recovered or vaccinated individuals must be determined. A traditional neutralisation test usually takes two to three days and must be carried out with infectious coronaviruses in a laboratory complying to biosafety level 3. A Swiss-German research team from Bern and Bochum has launched a test that takes only 18 hours and doesn’t have high biosafety requirements. The researchers have published their report in the journal “Vaccines” on 15 July 2020.

The test was developed at the Institute of Virology and Immunology (IVI) of the University of Bern and the Swiss Federal Office for Food Safety and Animal Health, and evaluated in cooperation with colleagues from the Ruhr-Universität Bochum (RUB) using serum samples from Covid-19 patients.

Disguising a harmless virus as Sars-Cov-2

In order to detect antibodies against Sars-Cov-2, the researchers used another virus that doesn’t propagate. They exchanged the envelope protein of this virus for the spike protein of the novel coronavirus, which mediates virus entry and infection. “As a result, the viruses can be identified by antibodies against Sars-Cov-2,” explains lead author Toni-Luise Meister from the Department of Molecular and Medical Virology at Ruhr-Universität Bochum. “The antibodies bind to the viruses that have been altered in this way and neutralise them so that no longer can penetrate the host cells.”

Luminescence helps determine immunity

Since the virus pseudotyped in this way can’t propagate in host cells, no elaborate biosafety precautions are necessary for the test. In order to determine the amount of antibodies, the researchers genetically modified the virus so that green fluorescent protein and a luciferase, an enzyme from fireflies, will be produced by infected cells. “After a single round of infection, we can then determine how many cells show green fluorescence,” says lead author Ferdinand Zettl from the Institute of Virology and Immunology in Bern. The green fluorescence is an indicator of infection with the pseudotyped virus. The less green cells the researchers are finding, the more neutralizing antibodies are present which blocked the virus. In addition, a luminometer may be used to read the luminescence signal produced by the luciferase enzyme – another way of evaluating the test.

Quick and reliable

In order to check the reliability and comparability with the conventional neutralisation test, the researchers applied it to blood samples from Covid-19 patients. “The direct comparison showed a good correlation between the two test systems,” explains corresponding author Professor Stephanie Pfänder from the Department of Molecular and Medical Virology at RUB. Compared to 56 hours for the conventional test, the new test is much faster, with only 18 hours to the test result. “Another great advantage is that it can be carried out in almost all medical labs, because no sophisticated safety precautions are necessary,” points out Dr. Gert Zimmer from the Institute of Virology and Immunology in Bern, corresponding author of the study.

Original publication

Ferdinand Zettl, Toni Luise Meister, Tanja Vollmer, Bastian Fischer, Jörg Steinmann, Adalbert Krawczyk, Philip V’kovski, Daniel Todt, Eike Steinmann, Stephanie Pfaender, Gert Zimmer: Rapid quantification of SARS-CoV-2-neutralizing antibodies using propagation-defective vesicular stomatitis virus pseudotypes, in: Vaccines, 2020, DOI: 10.3390/vaccines8030386

Press contact

Dr. Gert Zimmer
Institute of Virology and Immunology IVI
University of Bern
and Federal Food Safety and Veterinary Office (FSVO)
Switzerland
Phone: +41 58 469 9240
Email: gert.zimmer@ivi.admin.ch

Prof. Dr. Stephanie Pfänder
Department for Molecular & Medical Virology
Faculty of Medicine
Ruhr-Universität Bochum
Germany
Phone: +49 234 32 29278
Email: stephanie.pfaender@rub.de

Download high-resolution images
The selected images are downloaded as a ZIP file.
The captions and image credits are available in the HTML file after unzipping.
Conditions of use
The images are free to use for members of the press, provided the relevant copyright notice is included. The images may be used solely for press coverage of Ruhr-Universität Bochum that relates to the contents of the article that includes the link for the image download.
I accept the conditions of use.
Published
Thursday
30 July 2020
9.55 AM
By
Meike Drießen (md)
Translated by
Donata Zuber
Share
Teilen
 
Selected press releases
Overview
 
English News
Overview
 
German News
Homepage
  • A-Z
  • N
  • K
Logo RUB
Impressum | Kontakt
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

Datenschutz
Barrierefreiheit
Impressum
Schnellzugriff
Service und Themen
Anreise und Lagepläne
Hilfe im Notfall
Stellenangebote
Social Media
Facebook
Twitter
YouTube
Instagram
Seitenanfang y Kontrast N
Impressum | Kontakt