Magnetisch fanden die Nanopartikel ihren Weg in die Spitzen der Fortsätze von Nervenzellen.
© Molekulare Neurobiochemie

Biochemistry Initial steps to show nerves their growth direction magnetically

Magnetic nanoparticles raise hopes of treatments for Parkinson’s.

One reason why nerve damage in the brain cannot regenerate easily is that the neurites do not know in which direction they should grow. A team of researchers from Ruhr-Universität Bochum (RUB), Sorbonne University Paris, and the Technische Universität Braunschweig is now working on showing them the direction using magnetic nanoparticles. The team led by Professor Rolf Heumann, Senior Researcher for Molecular Neurobiochemistry at RUB, is hoping that this will allow the effects of neurodegenerative diseases such as Parkinson’s to be alleviated over the long term. The results of the work were published on 31 December 2020 in the journal Scientific Reports.

Neurites do not know the way

Restoring brain function following an injury or due to neurodegenerative diseases remains an unresolved problem in neuroscience and medicine. Regeneration in the central nervous system is only possible to a very limited degree as the regenerating neurite, the axon, comes into contact with proteins that have growth-inhibiting properties. “The regenerating axon also does not initially know in which direction it needs to grow to reach and functionally connect the denervated target tissue,” explains Rolf Heumann.

Signalling pathway allows nerve fibres to grow

The team in Bochum was previously able to show that the activation of a central signalling pathway within neurons, which is triggered by the Ras protein attached to the cell membrane, protects the cells from degeneration and also brings about fibre growth. The researchers wanted to control the direction of fibre growth in the current project. To do this, they used magnetic nanoparticles, which they implanted inside model neurons. The activation of the Ras signalling pathway is triggered by permanently active Ras protein or by a Ras-regulating switch protein.

Controlling nanoparticles with magnetic tips

“We initially showed that we were able to move the ferrous nanoparticles within neurons in a controlled manner using magnetic tips,” explains Fabian Raudzus. The group then also succeeded in binding the Ras-regulating switch protein inside the cell to the nanoparticles and magnetically transporting them to the cell membrane. The researchers were then able to implant these functionalised nanoparticles into the neurite and allow them to accumulate at its tip, where the direction of growth is determined. The binding of the nanoparticles and Ras switch protein was demonstrated using light scattering measurements and by microscopic procedures such as fluorescence correlation spectroscopy.

The research team sees therapeutic potential in the ability to magnetically control the functionalised nanoparticles in nerve fibres: “The Japanese researcher Professor Jun Takahashi recently started a clinical trial based on the transplantation of customised neurons, to replace certain dopaminergic neurons that are lost due to Parkinson’s ” explains Heumann. “The long-term goal of our study is to promote the regeneration of transplanted dopaminergic neurons using functionalised magnetic nanoparticles in the brain.”

Supplying several million neurons

To achieve this, the nanoparticles must be introduced into several million neurons. The team was able to show using model cells that large cell populations were simultaneously loaded with these magnetic nanoparticles using a simple method based on mechanical pressure. This did not disrupt the induction of the growth of nerve fibres.

“Although we are still far from a clinical application, we hope that our experiments represent a first step towards supporting the regeneration of transplanted dopaminergic neurons in the treatment of Parkinson’s,” says Rolf Heumann.

Funding

The work was funded by the European Union as part of the Magneuron project (grant agreement number 686841) and by the German Research Foundation (INST 213/886-1 FUGG).

Original publication

Fabian Raudzus, Hendrik Schöneborn, Sebastian Neumann, Emilie Secret, Aude Michel, Jérome Fresnais, Oliver Brylski, Christine Ménager, Jean Michel Siaugue, Rolf Heumann: Magnetic spatiotemporal control of SOS1 coupled nanoparticles for guided neurite growth in dopaminergic single cells, in: Scientific Reports, 2020, DOI: 10.1038/s41598-020-80253-w

Press contact

Prof. Dr. Rolf Heumann
Molecular Neurobiochemistry
Faculty of Chemistry and Biochemistry
Ruhr-Universität Bochum
Germany
Phone: +49 234 32 28230
Email: rolf.heumann@rub.de

Download high-resolution images
The selected images are downloaded as a ZIP file. The captions and image credits are available in the HTML file after unzipping.
Conditions of use
The images are free to use for members of the press, provided the relevant copyright notice is included. The images may be used solely for press coverage of Ruhr-Universität Bochum that relates solely to the contents of the article that includes the link for the image download. By downloading the images, you receive a simple right of use for one-time reporting. Saving the images for other purposes or further processing of the images that goes beyond adapting them to the respective layout requires an extended right of use. Should you therefore wish to use the photos in any other way, please contact redaktion@ruhr-uni-bochum.de

Published

Monday
18 January 2021
9:27 am

By

Meike Drießen (md)

Translated by

Lund Languages

Share