Jure Zabret, Marc Nowaczyk und Till Rudack (von links) vom Autorenteam
© RUB, Marquard

Biology How is a molecular machine assembled?

In a first, a research team has worked out how photosystem II is made up of more than 100 individual components.

The conversion of light into chemical energy by plants and photosynthetic microorganisms is one of the most important processes in nature, removing climate-damaging CO2 from the atmosphere. Protein complexes, so-called photosystems, play the key role in this process. An international research team from Ruhr-Universität Bochum (RUB), the Max Planck Institutes of Biochemistry and Biophysics, the Center for Synthetic Microbiology (SYNMIKRO) and the Chemistry Department at Philipps Universität Marburg, the University of Illinois Urbana-Champaign, USA, and Université Paris-Saclay, France, shed light for the first time on the structure and function of a transition state in the synthesis of photosystem II. The study was published online on 12 April 2021 in the journal Nature Plants.

Catalyst of life

Photosystem II (PS II) is of fundamental importance for life, as it is able to catalyse the splitting of water. The oxygen released in this reaction allows us to breathe. In addition, PS II converts light energy in such a way that atmospheric CO2 can be used to synthesise organic molecules. PS II thus represents the molecular beginning of all food chains. Its structure and function have already been researched in detail, but little has been known so far about the molecular processes that lead to the orderly assembly of the complex.

Assembly production

PS II consists of more than 100 individual parts that have to come together in a well-orchestrated process in order to ultimately create a fully functional machine. Helper proteins, so-called assembly factors, which are responsible for the sub-steps, play a crucial role in this process. “Picture them as robots on an assembly line, for example making a car,” explains Professor Marc Nowaczyk from the RUB Chair for Plant Biochemistry. “Each robot adds a part or assembles prefabricated modules to end up with a perfect machine.”

When figuring out how this is done, the difficulty was to isolate an intermediate product, including its molecular helpers, because such transition states are very unstable compared to the finished product and are only present in very small quantities. Only by using tricks, such as removing a part of the assembly line production, was it possible to isolate an intermediate stage with the associated helper proteins for the first time.

Cold insights: cryo-electron microscopy

Thanks to cryo-electron microscopy, sensitive protein structures, which include PS II transition states, and even the smallest virus particles can be imaged. The data, published in Nature Plants, show the molecular structure of a PS II transition complex with as many as three helper proteins. “During the construction of the PSII structural model, it turned out that one of these helper proteins causes previously unknown structural changes that we eventually linked to a novel protective mechanism,” explains Dr. Till Rudack from the Centre for Protein Diagnostics (ProDi). During this assembly step, PS II is only partially active: light-induced processes can already take place, but water splitting is not yet activated. This, as it turned out, leads to the formation of aggressive oxygen species that can damage the unfinished complex. However, the binding of the helper protein and the associated structural change at PS II can prevent the formation of the harmful molecules and, consequently, protect the complex in its vulnerable phase. Another helper protein in turn prepares the activation of the water-splitting mechanism. “As soon as we succeed in identifying any further intermediate stages of this activation, this could be the key to a profound understanding of molecular light-driven water splitting. As a result, we could advance the development of synthetic catalysts for the energy conversion of sunlight into organic substances,” conclude the authors.

Funding

The project was funded by the Foundation for the National Institutes of Health, the German Research Foundation and Agence Nationale de la Recherche.

Original publication

Jure Zabret et al.: Structural insights into photosystem II assembly, in Nature Plants, 2021, DOI: 10.1038/s41477-021-00895-0

Press contact

Prof. Dr. Marc Nowaczyk
Chair for Plant Biochemistry
Faculty of Biology and Biotechnology
Ruhr-Universität Bochum
Germany
Phone: +49 234 32 23657
Email: marc.m.nowaczyk@rub.de

Dr. Till Rudack
Centre for Protein Diagnostics (ProDi)
and Department of Biophysics
Faculty of Biology and Biotechnology
Ruhr-Universität Bochum
Germany
Phone: +49 234 32 18132, +49 234 32 22236
Email: till.rudack@rub.de

Download high-resolution images
The selected images are downloaded as a ZIP file. The captions and image credits are available in the HTML file after unzipping.
Conditions of use
The images are free to use for members of the press, provided the relevant copyright notice is included. The images may be used solely for press coverage of Ruhr-Universität Bochum that relates solely to the contents of the article that includes the link for the image download. By downloading the images, you receive a simple right of use for one-time reporting. Saving the images for other purposes or further processing of the images that goes beyond adapting them to the respective layout requires an extended right of use. Should you therefore wish to use the photos in any other way, please contact redaktion@ruhr-uni-bochum.de

Published

Thursday
22 April 2021
10:21 am

By

Marc Nowaczyk

Translated by

Donata Zuber

Share