Light sheet microscopy image of a fruiting body. The cell nuclei are labelled red, the cell wall was stained with solophenylflavin (cyan). © Israel Rocha-Mendoza und Meritxell Riquelme

Biology Deep insights into a living fungus

Light sheet microscopy enables us to examine fungal fruiting bodies on a living object.

In order to examine tissues under the microscope, they usually have to be cut into thin slices. But it is impossible to analyse whole tissues or living organisms in this way. However, this is exactly what two Mexican research groups have managed to do in collaboration with Dr. Ines Teichert from the Department of General and Molecular Botany at Ruhr-Universität Bochum (RUB). They used light sheet microscopy and an albino mutant of the filamentous fungus Sordaria macrospora, a popular model organism for studying the formation of fruiting bodies. The group published their findings in the Journal of Biophotonics on 20 February 2022.

Optical sections without any damage

Microscopic techniques that have high resolution are used to analyse tissues. However, many methods can only be applied to thin specimens. Using light sheet microscopy (LSFM), so-called optical sections are created in the tissues. “In LSFM, a light sheet is projected into the sample with the help of an illumination lens,” explains Ines Teichert. A detection lens arranged perpendicular to the illuminated plane picks up the emitted light. In that way, the tissue itself is less damaged by the selective radiation, and it is possible to take a great number of images with an excellent optical resolution at high speed, enabling a 3D reconstruction even at greater tissue depth.

Ines Teichert sent an albino mutant of the filamentous fungus Sordaria macrospora with a mutation in a melanin biosynthesis gene and a genetic nuclear marker to Ensenada, Mexico, where the research groups for optics, headed by Professor Israel Rocha-Mendoza, and for microbiology, headed by Professor Meritxell Riquelme, collaborated on the project. They constructed a light sheet microscope to visualize the inner structures of different types of small and large samples, ranging from microscopic cells and fungi to cleared mouse brains and shrimps with sizes up to tens of millimetres. The albino mutant allowed the researchers to see S. macrospora insides from the outside without the need for any clearing treatment.

Special light beams

In earlier work, the Mexican groups reported a light sheet microscope system for rapidly acquiring multifluorescent Neurospora crassa images using Gaussian light-sheets beams. However, Gaussian beams conveyed intrinsic optical properties that compromised the optical sectioning ability to image the samples over a large field of view. Those drawbacks provoked by Gaussian beams illumination are minimized using multicolor Bessel beam instead.

A fruiting body of Sordaria macrospora © Ines Teichert

The filamentous fungus examined in the present study is a genetic model system for studying fruiting body development. It forms pear-shaped black fruiting bodies two to four millimetres in size. In addition to the conventional Gaussian beams, the research groups also used so-called Bessel beams to produce the light sheet. These beams are non-diffracting and self-healing, so they maintain their shape during propagation. These optical properties result in homogeneous light sheets that provide uniform illumination. Yryx Luna-Palacios, a Mexican Ph.D. candidate, performed the Bessel beams implementation to the light sheet microscope and conducted the fungal imaging in this work.

“Using the two methods, we did indeed observe coloured cell walls and nuclei in young fruiting bodies,” says Ines Teichert. Using Bessel beams, it was possible to image even larger areas. “This research constitutes a proof-of-concept study,” says the researcher. “Now that we know that living fungi can be studied with light sheet microscopy, we will be able to address other questions, too.” For example, questions such as the localization of proteins during fruiting bodies development in fungi, i.e. how new tissues are formed.

Funding

Mercator Research Center MERCUR (An-2019-0035); Lore-Agnes project “Best Practice: Neues Lernen – Kooperieren – Innovieren”, Ruhr-Universität Bochum; Fund for Scientific Research and Technological Development of CICESE (FIDEICOMISO F00002), No. 251992

Original publication

Yryx Y. Luna-Palacios, Jacob Licea-Rodriguez, M. Dolores Camacho-Lopez, Ines Teichert, Meritxell Riquelme, Israel Rocha-Mendoza: Multicolor light‐sheet microscopy for a large field of view imaging: a comparative study between Bessel and Gaussian light‐sheets configurations, in: Journal of Biophotonics, 2022, DOI: 10.1002/jbio.202100359

Press contact

Dr. Ines Teichert
General and Molecular Botany
Faculty of Biology and Biotechnology
Ruhr-Universität Bochum
Germany
Phone: +49 234 32 24974
Email: ines.teichert@rub.de

Download high-resolution images
Der Download der gewählten Bilder erfolgt als ZIP-Datei. Bildzeilen und Bildnachweise finden Sie nach dem Entpacken in der enthaltenen HTML-Datei.
Nutzungsbedingungen
Die Verwendung der Bilder ist unter Angabe des entsprechenden Copyrights für die Presse honorarfrei. Die Bilder dürfen ausschließlich für eine Berichterstattung mit Bezug zur Ruhr-Universität Bochum verwendet werden, die sich ausschließlich auf die Inhalte des Artikels bezieht, der den Link zum Bilderdownload enthält. Mit dem Download erhalten Sie ein einfaches Nutzungsrecht zur einmaligen Berichterstattung. Eine weitergehende Bearbeitung, die über das Anpassen an das jeweilige Layout hinausgeht, oder eine Speicherung der Bilder für weitere Zwecke, erfordert eine Erweiterung des Nutzungsrechts. Sollten Sie die Fotos daher auf andere Weise verwenden wollen, kontaktieren Sie bitte redaktion@ruhr-uni-bochum.de

Published

Tuesday
15 March 2022
10:24 am

By

Meike Drießen (md)

Translated by

Donata Zuber

Share