Martina Havenith-Newen has gained new insights by combining two methods. © RUB, Marquard

Chemistry How protein-rich droplets form

Terahertz spectroscopy maps spontaneous formation of protein-rich droplets that may lead to neurodegenerative diseases.

Using a new method “Terahertz (THz) calorimetry“, a research team from the Cluster of Excellence Ruhr Explores Solvation (RESOLV) in Bochum was successful to shed new light on the spontaneous phase separation into a protein-rich and a protein-poor phase in a solution. It is assumed that the protein-rich droplets promote the formation of neurotoxic protein aggregates – a hot spot for neurodegenerative diseases. The researchers, led by Professor Martina Havenith, Chair of Physical Chemistry II at Ruhr University Bochum, report in the Journal of Physical Chemistry Letters published online on 6 February 2023.

Molecular level and time resolution in the picosecond range

The study is part of the “THz calorimetry“ project, which received a European Research Council (ERC) Advanced Grant. “The visionary idea in the project was to combine two powerful techniques in Physical Chemistry – laser spectroscopy and calorimetry,“ explains the grantee, Martina Havenith.

Calorimetry measures quantities fundamental to chemical and biochemical reactions, such as heat capacity, enthalpy, and entropy. Based on well-known substance-specific parameters, it is possible to predict whether, for example, a reaction will occur spontaneously without any external input of energy or whether equilibrium conditions dominate. Calorimetric measurements take place in a macroscopic container. The amount of heat required for a temperature change or a chemical or biochemical reaction is measured. “The limitation of this method is its limited time resolution and the amount of sample required,“ says Martina Havenith.

The goal of the ERC project was to overcome these limitations. This required a new approach to measure calorimetric quantities for the smallest samples with a time resolution of picoseconds, or one-millionth of one-millionth of a second at the molecular level. “However, we can not, in principle, achieve time and spatial resolution on this scale reach with these traditional concepts of heat measurements,“ the researcher explains. “This required a different revolutionary approach that intrinsically offers a different access.“

Water plays a crucial role

The research group showed that spectroscopic fingerprints of water could be measured by their absorption in the THz range, which is linearly correlated with calorimetric quantities. This allows the researchers to track these fundamental calorimetric quantities in real time using spectroscopic and ultrafast laser spectroscopic methods, even for complex systems during a process or reaction.

In their current work, inspired by their collaboration with the research groups of Professor Konstanze Winklhofer and Professor Jörg Tatzelt at Ruhr University Bochum, they used this method for the first time to study a hot topic in Biomedical research: They investigated liquid-liquid phase separation, the spontaneous phase separation into a protein-rich and a protein-poor liquid phase.

“Using THz calorimetry, we can map the formation of these protein-rich droplets on a molecular level. Not only the proteins themselves but the water also plays a crucial role,“ Martina Havenith reports. “We can now follow on-line any changes in the water during the formation process with the THz camera. Based on the derived calorimetric quantities, we can give accurate predictions about the formation of phase separated droplets and the dependency on external parameters such as temperature.“

Funding

The work was supported by the European Research Council Advanced Grant 695437 THz-Calorimetry, the German Research Foundation in the Cluster of Excellence RESOLV (EXC2033-390677874 – RESOLV), the Mercator Research Center Ruhr (MERCUR), the European Union’s Horizon 2020 programme (FP-RESOMUS – MSCA 801459), the German Federal Ministry of Education and Research, and the Ministry of Culture and Research of Nord Rhine-Westphalia.

Original publications

Simone Pezzotti, Benedikt König, Sashary Ramos, Gerhard Schwaab, Martina Havenith: Liquid-liquid phase separation? Ask the water!, in: JPC Letter, 2023, DOI: 10.1021/acs.jpclett.2c02697

Simone Pezzotti, Federico Sebastiani, Eliane P. van Dam, Sashary Ramos, Valeria Conti Nibali, Gerhard Schwaab, Martina Havenith: Spectroscopic fingerprints of cavity formation and solute insertion as a measure of hydration entropic loss and enthalpic gain. Angewandte Chemie International Edition, 2022, DOI: 10.1002/anie.202203893

Press contact

Prof. Dr. Martina Havenith
Physical Chemistry II
Faculty of Chemistry and Biochemistry
Ruhr University Bochum
Germany
Phone: +49 234 32 28249
Email: pc2office@rub.de

Download high-resolution images
Der Download der gewählten Bilder erfolgt als ZIP-Datei. Bildzeilen und Bildnachweise finden Sie nach dem Entpacken in der enthaltenen HTML-Datei.
Nutzungsbedingungen
Die Verwendung der Bilder ist unter Angabe des entsprechenden Copyrights für die Presse honorarfrei. Die Bilder dürfen ausschließlich für eine Berichterstattung mit Bezug zur Ruhr-Universität Bochum verwendet werden, die sich ausschließlich auf die Inhalte des Artikels bezieht, der den Link zum Bilderdownload enthält. Mit dem Download erhalten Sie ein einfaches Nutzungsrecht zur einmaligen Berichterstattung. Eine weitergehende Bearbeitung, die über das Anpassen an das jeweilige Layout hinausgeht, oder eine Speicherung der Bilder für weitere Zwecke, erfordert eine Erweiterung des Nutzungsrechts. Sollten Sie die Fotos daher auf andere Weise verwenden wollen, kontaktieren Sie bitte redaktion@ruhr-uni-bochum.de

Published

Friday
10 February 2023
9:21 am

By

Meike Drießen (md)

Translated by

Martina Havenith

Share