Together with an international team, Johannes Karges has developed an active substance that uses ultrasound to unfold its cell-damaging effect only where it is supposed to.
© RUB, Marquard

Chemistry Ultrasound activates anticancer agent

Chemotherapy treatments produce strong side effects. A new agent that accumulates in the tumour tissue and is activated there by ultrasound waves does not have this problem.

Platinum complexes are among the most commonly used drugs against cancer. They are successful, but have severe side effects. An international research team led by Dr. Johannes Karges from the Faculty of Chemistry and Biochemistry at Ruhr University Bochum, Germany, has developed a complex that accumulates in tumour tissue and is activated there by ultrasound waves. Its cell-damaging effect thus only unfolds where it is actually wanted. “Where previous studies relied on light activations that can only penetrate a few millimetres deep into the tissue, we have now developed a treatment method with ultrasound activation that penetrates several centimetres deep into the body,” says Karges. This could make treatment with few side effects possible even for large and deep-seated tumours. The researchers published their results in the journal Angewandte Chemie International Edition of 24 March 2023.

Harmless in healthy tissue

The platinum(II) complexes cisplatin, oxaliplatin and carboplatin are among the most commonly used cancer drugs. Their clinical success is offset by severe side effects, such as nausea, vomiting, kidney damage and bone marrow suppression. To overcome these limitations, major research efforts have been invested in the development of so-called platinum(IV) complex prodrugs over the past decades. “These prodrugs are stable and inactive, so they are completely harmless,” explains Johannes Karges. “In healthy tissue, they are supposed to stay that way. In cancer tissue, however, they should be rapidly converted into the therapeutically active platinum(II) complexes.”

Energy is required for the reduction of the metal complex. Previous studies reported activation with ultraviolet, blue or red light. “The problem is that light can only penetrate less than a centimetre deep into the body and thus does not reach many tumours,” explains Johannes Karges. To overcome this limitation, his team has for the first time combined platinum(IV) complex prodrugs with sonosensitizers that can be selectively activated with ultrasound irradiation.

Nanoparticles accumulate in the tumour

To develop a therapeutically effective complex, the researchers encapsulated the platinum(IV) complex prodrugs and the sonosensitizers together in haemoglobin to form nanoparticles. “We were able to observe that the nanoparticles selectively accumulated in a mouse intestinal tumour after injection into the bloodstream, thus supporting targeted treatment,” reports Johannes Karges. “After irradiation with ultrasound, the platinum(IV) prodrug was activated at the tumour site, triggering the release of cisplatin, which is toxic to cells, and almost completely eradicating the tumour.”

Advantages of ultrasound

These results could pave the way for the development of novel techniques and agents for the treatment of very large or deep-seated tumours. Ultrasound can penetrate more than an order of magnitude deeper into tissue than near-infrared light. In addition, ultrasound treatments are generally considered to be less invasive and easy to use. Another advantage is that hospitals are usually already equipped with the necessary equipment. “Our work is still fundamental research,” Johannes Karges emphasises. “Whether and when treatments based on this can be offered in clinical practice is not yet foreseeable.”

Funding

Johannes Karges was supported by a Liebig scholarship from the Chemical Industry Fund.

Original publication

Ganghao Liang, Tumpa Sadhukhan, Samya Banerjee, Dongsheng Tang, Hanchen Zhang, Minhui Cui, Nicolás Montesdeoca, Johannes Karges, Haihua Xiao: Reduction of Platinum(IV) Prodrug Hemoglobin Nanoparticles with deeply-penetrating ultrasound radiation for tumor-targeted therapeutically enhanced anticancer therapy, in: Angewandte Chemie International Edition, 2023, DOI: 10.1002/anie.202301074

Press contact

Dr Johannes Karges
Faculty of Chemistry and Biochemistry
Ruhr-University Bochum
Phone: +49 234 32 24187
E-mail: johannes.karges@ruhr-uni-bochum.de

Download high-resolution images
The selected images are downloaded as a ZIP file. The captions and image credits are available in the HTML file after unzipping.
Conditions of use
The images are free to use for members of the press, provided the relevant copyright notice is included. The images may be used solely for press coverage of Ruhr-Universität Bochum that relates solely to the contents of the article that includes the link for the image download. By downloading the images, you receive a simple right of use for one-time reporting. Saving the images for other purposes or further processing of the images that goes beyond adapting them to the respective layout requires an extended right of use. Should you therefore wish to use the photos in any other way, please contact redaktion@ruhr-uni-bochum.de

Published

Wednesday
05 April 2023
9:15 am

By

Meike Drießen (md)

Translated by

Lund Languages

Share