Neuroscience How single neurons and brain networks support spatial navigation

Both individual nerve cells and large neuronal assemblies appear to be relevant for spatial navigation. But what’s the relationship between both?

Spatial navigation is an essential cognitive function, which is frequently impaired in patients suffering from neurological and psychiatric disorders. Research groups worldwide have studied the neuronal basis of spatial navigation, and the activity of both individual nerve cells and large cell assemblies in the brain appear to play a crucial role in the process. However, the relationship between the behaviour of individual cells and the behaviour of large cell networks has for the most part remained unexplored.

Various theories on this topic were put forward by an international team in the journal “Trends in Cognitive Sciences” from 24 May 2019. The review article was jointly authored by Dr. Lukas Kunz from the University Medical Center in Freiburg, Professor Liang Wang from the Chinese Academy of Sciences in Beijing, and Professor Nikolai Axmacher from Ruhr-Universität Bochum, together with colleagues from Columbia University in New York.

The brain’s GPS system

Numerous animal studies have shown that the brain contains specialised nerve cells that are essential for navigation. The activity of so-called place cells codes an individual’s specific location in space. “Together with other nerve cells, such as grid cells, they constitute a kind of GPS system in the brain,” explains Nikolai Axmacher, Head of the Neuropsychology Department in Bochum.

Studies with humans, on the other hand, have typically focused on the activity of large neural networks and identified large-scale brain areas that are relevant for spatial navigation.

Independently of each other, two research groups – one in New York and a network in Bochum, Freiburg and Beijing – have recently identified a potential link between the individual-cell scale and the network scale. In their article, the teams outlined their theory, based on the results of their respective experiments.

Potential link between the scales discovered

The groups analysed the rhythmical brain activity of cell assemblies in the so-called entorhinal cortex. This is where grid cells are located in the brain that were characterised in detail in animal studies and whose function in spatial navigation has been demonstrated on the individual-cell scale. The researchers found characteristics in the larger rhythmical brain waves that are similar to those that had previously been described for individual cells.

But what is the relationship between brain oscillations and the activity of individual nerve cells? One theory assumes that neighbouring cells code similar locations; this spatial pattern might be reflected in the oscillations. Another model assumes that a higher number of different cells is activated during navigation in certain directions than in other directions, which in turn might result in increased oscillations.

“Consequently, EEG oscillations may constitute the link between individual cells and the larger-scale networks that are typically investigated in humans,” concludes Axmacher.

Alternative theory

The researchers are also outlining a completely different interpretation: “It is just as conceivable that the neural phenomena on the individual-cell scale and the network scale are not linked at all,” says Lukas Kunz, neuroscientist at the University Medical Center in Freiburg. “Both scales may underlie  spatial behaviour, but they may not be directly related to each other.”

The researchers intend to verify these theories in the next step. “It is important to learn more details in order to integrate the research results gained in experiments with animals and with humans,” the authors explain. “It is equally important to know if the individual-cell scale and the network scale are affected by diseases jointly or independently of each other – and, consequently, if pharmacological treatment would affect them jointly or individually.”

Funding

The work was supported by the German Research Foundation (SFB 874, SFB 1280), German Federal Ministry of Education and Research (01GQ1705A), National Science Foundation (BCS-1724243, BCS-1724243), National Institutes of Health (563386, MH061975, MH104606), Chinese Academy of Science (XDB32010300), Beijing Municipal Science and Technology Commission (Z171100000117014), CAS Interdisciplinary Innovation Team (JCTD-2018-07), and Natural Science Foundation of China (81422024, 31771255).

Original publication

Lukas Kunz, Shachar Maidenbaum, Dong Chen, Liang Wang, Joshua Jacobs, Nikolai Axmacher: Mesoscopic neural representations in spatial navigation, in: Trends in Cognitive Sciences, 2019, DOI: 10.1016/j.tics.2019.04.011

Press contact

Prof. Dr. Nikolai Axmacher
Department of Neuropsychology
Institute of Cognitive Neuroscience
Faculty of Psychology
Ruhr-Universität Bochum
Germany
Phone: +49 234 32 22674
Email: nikolai.axmacher@rub.de

Dr. Lukas Kunz
Spatial Memory Lab
University Medical Center Freiburg
Germany
Phone: +49 761 270 52870
Email: lukas.kunz@uniklinik-freiburg.de

Download high-resolution images
The selected images are downloaded as a ZIP file. The captions and image credits are available in the HTML file after unzipping.
Conditions of use
The images are free to use for members of the press, provided the relevant copyright notice is included. The images may be used solely for press coverage of Ruhr-Universität Bochum that relates solely to the contents of the article that includes the link for the image download. By downloading the images, you receive a simple right of use for one-time reporting. Saving the images for other purposes or further processing of the images that goes beyond adapting them to the respective layout requires an extended right of use. Should you therefore wish to use the photos in any other way, please contact redaktion@ruhr-uni-bochum.de

Published

Friday
24 May 2019
12:18 pm

By

Julia Weiler

Translated by

Donata Zuber

Share