Künstliche Intelligenz Der Nutzen der Langsamkeit
Ein von Bochumer Neuroinformatikern entwickelter Algorithmus schätzt Alter und ethnische Herkunft so gut wie Menschen. Welche Zeichen er deutet, wissen sie nicht genau.
Falten, Furchen, Flecken: Das Altern eines Menschen geht mit verräterischen Zeichen im Gesicht einher. Forscher vom Institut für Neuroinformatik der RUB haben einen Algorithmus entwickelt, der diese Zeichen besonders zuverlässig deutet. Er erlaubt es, Alter und Ethnie von Menschen so treffsicher zu schätzen, dass die RUB-Forscher eine Zeit lang Weltmeister waren. Das RUB-Team berichtet in der Zeitschrift „Machine Learning“ vom Mai 2020.
Das System hat selbst gelernt zu schätzen
„Wir wissen gar nicht so genau, auf welche Merkmale unser Algorithmus achtet“, sagt Prof. Dr. Laurenz Wiskott vom Institut für Neuroinformatik. Denn das System hat selbst gelernt, Gesichter richtig einzuschätzen. Der erfolgreiche Algorithmus der Bochumer Wissenschaftler ist ein hierarchisches neuronales Netzwerk mit elf Ebenen. Als Eingangsdaten präsentierten die Forscher ihm mehrere Zigtausend Fotos von Gesichtern verschiedenen Alters. Das Alter war jeweils bekannt. „Traditionell ist es so, dass das System als Eingangsdaten die Bilder bekommt und als Ziel das richtige Alter und dann versucht, die Zwischenschritte dahingehend zu optimieren, dass es auf das gewünschte Alter schließt“, erklärt Erstautor Alberto Escalante.
Die Bochumer Forscher wählten jedoch einen anderen Ansatz. Sie boten dem System die vielen Gesichtsfotos nach Alter sortiert dar. Das System ignoriert dann die Merkmale, die von einem Bild zum anderen variieren, und orientiert sich nur an den Merkmalen, die sich langsam verändern. „Man kann sich das vorstellen wie einen Film aus Zigtausend Gesichterfotos“, erklärt Laurenz Wiskott. „All die Merkmale, die sich von einem Gesicht zum nächsten immer wieder verändern, wie Augenfarbe, Größe des Mundes, Länge der Nase, blendet das System aus. Es konzentriert sich auf Merkmale, die sich über alle Gesichter hinweg betrachtet langsam verändern.“ So steigt zum Beispiel die Summe der Falten in den Gesichtern langsam, aber stetig an. Der Algorithmus liegt bei der Schätzung des Alters der Personen auf den Fotos durchschnittlich nur knapp dreieinhalb Jahre daneben. Damit übertrifft er sogar Menschen an Genauigkeit, die echte Experten in Gesichtserkennung und -interpretation sind.