Jump to navigation

Logo RUB
  • Energie
  • Studium
  • Forschung
  • Transfer
  • News
  • Über uns
  • Einrichtungen
 
MENÜ
  • RUB-STARTSEITE
  • News
  • Wissenschaft
  • Studium
  • Transfer
  • Leute
  • Hochschulpolitik
  • Kultur und Freizeit
  • Vermischtes
  • Servicemeldungen
  • Serien
  • Dossiers
  • Bildergalerien
  • Presseinformationen
    • Abonnieren
  • RUB in den Medien
    • Abonnieren
  • Rubens
  • Rubin
    • Abonnieren
    • Printarchiv
  • Archiv
  • English
  • Redaktion

Newsportal - Ruhr-Universität Bochum

Gemüse
Was passiert bei der Reifung in Paprikafrüchten und wie unterscheidet sich das von Tomaten?
© RUB, Marquard
Biologie

Was Paprika erröten lässt

Grüne Paprika sind unreif und reifen auch nicht nach. Bochumer Biologen wollen wissen warum.

Leuchtend rot, lecker und gesund, so kennt und liebt man Paprika. Was sie allerdings bei der Reifung rot werden lässt, hat das Team um Prof. Dr. Sacha Baginsky vom Lehrstuhl Biochemie der Pflanzen der RUB erstmals auf Proteinebene im Detail entschlüsselt. Im Mittelpunkt stehen die sogenannten Plastiden, typische pflanzliche Zellorganellen, in denen Chlorophyll abgebaut und im Zuge der Fruchtreifung Carotinoide hergestellt werden. Optisch zeigt sich diese Umwandlung deutlich im Farbwechsel von grün zu orange oder rot. Den Prozess hat das Team detailliert und global auf Proteinebene dokumentiert und die Ergebnisse am 30. November 2020 in „The Plant Journal“ publiziert.

Vom Chlorophyll zum Carotinoid

Paprikafrüchte, wissenschaftlich Capsicum annuum, gehören wegen ihres aromatischen Geschmacks und hoher Konzentrationen an gesundheitsförderlichen Inhaltsstoffen wie Vitamin C und antioxidativ wirkendem Provitamin A (Carotinoide) zu den beliebtesten Gemüsesorten. Die Fruchtreifung in Paprika verläuft von photosynthetisch aktiven Früchten mit hohem Chlorophyll- und Stärkegehalt zu nicht-photosynthetischen, Carotinoid-reichen Früchten. Essenzielle Schritte dieser Umwandlung finden in typischen pflanzlichen Zellorganellen, den sogenannten Plastiden statt.

Dr. Anja Rödiger und Prof. Dr. Sacha Baginsky vom Lehrstuhl Biochemie der Pflanzen
© RUB, Marquard

Am Anfang stehen Vorläuferorganellen, die sogenannten Proplastiden. Sie sind noch undifferenziert und entwickelt sich je nach Gewebetyp und Umweltsignalen zu verschiedenen Plastiden. Bei vielen Frucht- und Gemüsesorten entwickeln sich daraus die Chromoplasten. „Sie tragen ihren Namen wegen ihrer oft leuchtenden Farben“, erklärt Sacha Baginsky. In Paprikafrüchten entwickeln sich aus Proplastiden zuerst photosynthetisch aktive Chloroplasten, aus denen sich bei der Reifung durch den Abbau von Chlorophyll und der Photosynthese-Maschinerie die Carotinoid-reichen Chromoplasten entwickeln.

Der entscheidende Unterschied zur Tomate

Ähnlich ist es in der Tomate, wobei allerdings ein entscheidender Unterschied zur Paprika besteht: Tomaten gehören zu den klimakterischen Früchten, die nach der Ernte nachreifen. Biochemisch ist dieser Prozess durch einen enormen Anstieg respiratorischer Aktivität mit großem Sauerstoffverbrauch gekennzeichnet, das sogenannte Klimakterium. Bei Paprika ist dies nicht der Fall. „Die im Supermarkt häufig erhältlichen grünen Paprika sind unreif“, so Sacha Baginsky. Sie tragen noch Chlorophyll-reiche Chloroplasten und enthalten, wenn die Paprika frisch ist, auch eine große Menge der photosynthetischen Speichersubstanz Stärke. „Unsere Daten zeigen nun einige Unterschiede in der Chromoplastendifferenzierung zwischen Paprika und Tomate auf molekularer Ebene, die Einblicke in den unterschiedlichen Metabolismus klimakterischer und nicht-klimakterischer Früchte gewährt“, so der Biologe.

Angeklickt
  • Ausführliche Presseinformation
Veröffentlicht
Montag
14. Dezember 2020
09.04 Uhr
Von
Meike Drießen (md)
Share
Teilen
Das könnte Sie auch interessieren
Juliane Bauch im Labor
Multiple Sklerose

Tenascin-Proteine hemmen Regeneration der Zell-Ummantelung

Person mit Weckglas, das Pflanzen enthält
Biologie

Wie sich Wasserflöhe gegen fleischfressende Pflanzen verteidigen

Autorengruppe
Biologie

Ein Gift hilft Wasserstoff produzierende Biokatalysatoren zu verstehen

Derzeit beliebt
KI: Das Bochumer Team mit Projektleiter Peter Salden, Nadine Lordick, Jonas Loschke und Maike Wiethoff (von links)
Künstliche Intelligenz

Bochumer Projekt schafft Klarheit zu KI-Tools für NRW-Hochschulen

Ein junger Mann mit schwarzem Kapuzenpulli sitzt in einer Hörsaalreihe und lächelt.
Politik und Studium

Dienstag Bachelorarbeit abgeben, Sonntag Bundestagsmandat gewinnen

Autorenteam
Medizin

Signalübertragung im Immun- und Nervensystem mithilfe von NEMO

 
Mehr Wissenschaft
Ressort
 
Zur Startseite
News
  • A-Z
  • N
  • K
Logo RUB
Impressum | Kontakt
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

Datenschutz
Barrierefreiheit
Impressum
Schnellzugriff
Service und Themen
Anreise und Lagepläne
Hilfe im Notfall
Stellenangebote
Social Media
Facebook
Twitter
YouTube
Instagram
Seitenanfang y Kontrast N
Impressum | Kontakt