Jump to navigation

Logo RUB
  • Energiesparen
  • Studium
  • Forschung
  • Transfer
  • News
  • Über uns
  • Einrichtungen
 
MENÜ
  • RUB-STARTSEITE
  • News
  • Wissenschaft
  • Studium
  • Transfer
  • Leute
  • Hochschulpolitik
  • Kultur und Freizeit
  • Vermischtes
  • Servicemeldungen
  • Serien
  • Dossiers
  • Bildergalerien
  • Presseinformationen
    • Abonnieren
  • RUB in den Medien
  • Rubens
  • Rubin
    • Abonnieren
    • Printarchiv
  • Archiv
  • English
  • Redaktion

Newsportal - Ruhr-Universität Bochum

Autorenteam
Jörg Tatzelt, Konstanze Winklhofer und Simran Goel (von links) haben die Untersuchungen gemeinsam durchgeführt.
© RUB, Marquard
Medizin

Signalübertragung im Immun- und Nervensystem mithilfe von NEMO

In Zellen lagern sich bestimmte Biomoleküle in Form aktiver Komplexe vorübergehend zusammen. Das kann entscheidend sein für ihre Funktionsfähigkeit.

Bei der Übertragung von Signalen innerhalb von Zellen greifen viele einzelne Schritte ineinander. Unter anderem werden Proteine mit bestimmten Bausteinen versehen, die ihre Funktion ein- oder ausschalten. Um eine schnelle Signalübertragung zu gewährleisten, sammeln sich diese Bausteine in der Zelle an bestimmten Orten zeitlich begrenzt an; Forschende sprechen von biomolekularen Kondensaten. Ein Team um Prof. Dr. Konstanze Winklhofer, Leiterin des Lehrstuhls Molekulare Zellbiologie an der Ruhr-Universität Bochum, hat gezeigt, dass auch das Protein NEMO Kondensate bildet und welcher Mechanismus der NEMO-Kondensatbildung zugrunde liegt. Die Erkenntnisse sind bedeutend für das Verständnis von Signalübertragungen im Immun- und Nervensystem. Die Forschenden berichten in der Zeitschrift Life Science Alliance vom 31. Januar 2023.

Proteine ein- und ausschalten

Verschiedene zelluläre Prozesse werden durch Bindung von Botenstoffen wie Hormonen, Neurotransmittern oder Zytokinen an spezifische Rezeptoren in der Zellmembran initiiert. „Die Signalübertragung muss zeitlich und räumlich strikt reguliert werden, um einerseits eine adäquate zelluläre Reaktion auszulösen und andererseits überschießende Reaktionen zu vermeiden“, erklärt Konstanze Winklhofer. Die Regulation erfolgt beispielsweise dadurch, dass Proteine vorübergehend verändert werden, etwa durch das Anhängen von Phosphatgruppen oder von Ketten bestehend aus kleinen Ubiquitin-Proteinen.

Um eine schnelle Regulation zu ermöglichen, können sich die dafür erforderlichen Biomoleküle in sogenannten Kondensaten zusammenfinden. „Das kann man sich so vorstellen, dass sich diese Moleküle an bestimmten Orten in der Zelle vorübergehend ansammeln“, erklärt Konstanze Winklhofer. Diese Ansammlung von Molekülen gleicht einem Tropfen, verfügt aber über keine äußere Abgrenzung durch eine Membran.

NEMO braucht Ubiquitin-Ketten

Die Arbeitsgruppe von Konstanze Winklhofer konnte nun zeigen, dass solche biomolekularen Kondensate bei der Aktivierung des Transkriptionsfaktors NF-κB gebildet werden. Dieser Transkriptionsfaktor wird durch verschiedenen Signalwege aktiviert, beispielsweise bei Immunreaktionen durch die Zytokine Interleukin-1 (IL-1) und Tumornekrose-Faktor (TNF) oder durch verschiedene Faktoren im Nervensystem.

Eine zentrale Rolle bei der Aktivierung von NF-κB spielt das Protein NEMO (NF-κB essential modulator). Verschiedene NF-κB-aktivierende Reize bewirken die Bildung von Ketten aus Ubiquitin-Molekülen. NEMO bindet and diese Ketten, ändert seine Konformation und aktiviert dadurch bestimmte Enzyme, die für die Signalweitergabe erforderlich sind.

Konstanze Winklhofer und ihr Team haben herausgefunden, dass NEMO nur dann biomolekulare Kondensate bilden kann, wenn es mit Ubiquitin-Ketten interagiert. Ist die Bindung von NEMO an Ubiquitin-Ketten beeinträchtigt durch eine Mutation im NEMO-Gen, bilden sich keine Kondensate und NF-κB wird nicht aktiviert.

Angeklickt
  • Ausführliche Presseinformation
Download hochauflösender Bilder
Der Download der gewählten Bilder erfolgt als ZIP-Datei.
Bildzeilen und Bildnachweise finden Sie nach dem Entpacken in der enthaltenen HTML-Datei.
Nutzungsbedingungen
Die Verwendung der Bilder ist unter Angabe des entsprechenden Copyrights für die Presse honorarfrei. Die Bilder dürfen ausschließlich für eine Berichterstattung mit Bezug zur Ruhr-Universität Bochum verwendet werden, die sich auf die Inhalte des Artikels bezieht, der den Link zum Bilderdownload enthält.
Ich akzeptiere die Nutzungsbedingungen.
Veröffentlicht
Freitag
3. Februar 2023
09.10 Uhr
Von
Meike Drießen (md)
Share
Teilen
Das könnte Sie auch interessieren
Forschungsteam
Neurowissenschaft

Vogelhirne weisen eine überraschende Organisation auf

<div>
	Jacqueline Reinhard forscht am Lehrstuhl für Zellmorphologie und Molekulare Neurobiologie.</div>
Neurobiologie

Protein Tenascin-C wichtig bei Durchblutungsstörungen der Netzhaut

Porträt
Biomedizin

Neuronale Einschlüsse bei Parkinson-Krankheit sehen aus wie Zwiebeln

Derzeit beliebt
Klebefäden zwischen zwei Oberflächen
Teilchenphysik

Der Kleber, der Materie zusammenhält

Landkarte auf einem Tablet
ERC Advanced Grant

Mit Tricks zur besseren inneren Landkarte

Porträt
ERC ADVANCED GRANT

Umdenken für neue und sichere Verschlüsselungen

 
Mehr Wissenschaft
Ressort
 
Zur Startseite
News
  • A-Z
  • N
  • K
Logo RUB
Impressum | Kontakt
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

Datenschutz
Barrierefreiheit
Impressum
Schnellzugriff
Service und Themen
Anreise und Lagepläne
Hilfe im Notfall
Stellenangebote
Social Media
Facebook
Twitter
YouTube
Instagram
Seitenanfang y Kontrast N
Impressum | Kontakt