Die Autoren vom Exzellenzcluster RESOLV: Steffen Murke, Martina Havenith, Simone Pezzotti und Wanlin Chen (von links)
© RESOLV, Kasper

Elektrochemie Neue Wege zur Optimierung der Säure/Basen-Chemie in der Elektrochemie

Forschende haben neue Stellschrauben gefunden, um elektrochemische Prozesse zu beeinflussen und optimieren.

Die Optimierung elektrochemischer Reaktionen ist für die Umstellung hin zu erneuerbaren Energie- und Kohlenstoffquellen eine wichtige Stellschraube. Bei elektrochemischen Reaktionen werden durch Anlegen eines elektrischen Potenzials chemische Reaktionen induziert. Diese Chemie bildet die Grundlage für zahlreiche Anwendungen, einschließlich der Erzeugung von Wasserstoff und der Speicherung von Energie in Batterien. Obwohl in diesem Bereich in den vergangenen Jahren viele Fragen aufgegriffen wurden, gibt es noch ein Potenzial für weitergehende Verbesserungen. Forschende des Exzellenzclusters RESOLV an der Ruhr-Universität Bochum und der École normale supérieure in Paris haben zwei neue Aspekte gefunden, um elektrochemische Reaktionen an Grenzflächen zu steuern und damit zu optimieren. Sie beschreiben ihre Ergebnisse im Journal of the American Chemical Society am 10. April 2024. Der Artikel wurde von dem Journal für die Titelseite ausgewählt.

Oberflächensensitive Spektroskopie

Um das komplexe Verhalten an Grenzflächen zu verstehen, untersuchte das Team einen wichtigen Parameter bei elektrochemischen Reaktionen, die sogenannte Säurekonstante (pKa) an elektrifizierten Metalloberflächen/Wasser-Grenzflächen. Dieser Wert ist in der Lösung wohl bekannt. „Allerdings gab es Spekulationen darüber, dass sich dieser Wert, der für die Reaktion entscheidend ist, in der Nähe einer Elektrode von der in einer Lösung unterscheidet“, erklärt Prof. Dr. Martina Havenith-Newen, Sprecherin von RESOLV. Um pKa-Werte unter elektrochemischen Bedingungen zu messen, hat ihr Team besondere, oberflächenspezifische spektroskopische Techniken – die Surface-Enhanced Raman Spectroscopy (SERS) – eingesetzt und die Ergebnisse mit theoretischer Modellierung verglichen. Damit konnten die Forschenden als Funktion der angelegten Spannung signifikante Abweichungen von der Säure-Base-Chemie an elektrifizierten Grenzflächen aufdecken, die sich von den bekannten Prozessen in der Lösung unterscheiden.

Lokale Wassernetzwerke und starke elektrische Felder

In der Publikation beschreiben sie zwei neue Schlüsselmechanismen, die Säure-Base-Reaktionen an elektrifizierten Grenzflächen beeinflussen: den Einfluss der lokalen Wasserstruktur an der Elektrode und die starken lokalen elektrischen Felder. Am Beispiel der Aminosäure Glycin wurde die Protonierung/Deprotonierung als Funktion der angelegten Felder vermessen und eine Destabilisierung des Zwitterions beobachtet. „Die Ergebnisse zeigen die Veränderungen der lokalen Solvatationseigenschaften an Metall/Wasser-Grenzflächen auf und eröffnen neue Möglichkeiten zur Optimierung der Reaktivität in der Elektrochemie“, so Martina Havenith. „Diese Erkenntnisse bieten neue Chancen zur Entwicklung von Strategien für die Katalyse, da die beiden entscheidenden Faktoren – lokale Wasserstrukturen und elektrische Felder – manipuliert werden können.

Förderung

Diese Arbeit wurde gefördert von der Deutschen Forschungsgemeinschaft (DFG) im Rahmen des Exzellenzsclusters EXC-2033 – 390677874 – RESOLV, durch das "Center for Solvation Science ZEMOS", gefördert durch das Bundesministerium für Bildung und Forschung und Forschung BMBF und durch das Ministerium für Kultur und Forschung des Landes Nordrhein-Westfalen MKW NRW. W.C. und M.H. bedanken sich bei der Alexander von Humboldt-Stiftung (AvH) für das Forschungsstipendium im Rahmen des Henriette-Hertz-Scouting-Programms. S.P. dankt für die Förderung durch den Europäischen Forschungsrat (ERC, ELECTROPHOBIC, Grant Agreement Nr. 101077129).

Originalveröffentlichung

Steffen Murke, Wanlin Chen, Simone Pezzotti, Martina Havenith: Tuning Acid-Base Chemistry at an Electrified Gold/Water Interface, in Journal of the American Chemical Society, 2024, DOI: 10.1021/jacs.3c13633

Pressekontakt

Prof. Dr. Martina Havenith
Physikalische Chemie II
Fakultät für Chemie und Biochemie
Ruhr-Universität Bochum
Tel.: +49 234 32 28249
E-Mail: pc2office@ruhr-uni-bochum.de

Download hochauflösender Bilder
Der Download der gewählten Bilder erfolgt als ZIP-Datei. Bildzeilen und Bildnachweise finden Sie nach dem Entpacken in der enthaltenen HTML-Datei.
Nutzungsbedingungen
Die Verwendung der Bilder ist unter Angabe des entsprechenden Copyrights für die Presse honorarfrei. Die Bilder dürfen ausschließlich für eine Berichterstattung mit Bezug zur Ruhr-Universität Bochum verwendet werden, die sich ausschließlich auf die Inhalte des Artikels bezieht, der den Link zum Bilderdownload enthält. Mit dem Download erhalten Sie ein einfaches Nutzungsrecht zur einmaligen Berichterstattung. Eine weitergehende Bearbeitung, die über das Anpassen an das jeweilige Layout hinausgeht, oder eine Speicherung der Bilder für weitere Zwecke, erfordert eine Erweiterung des Nutzungsrechts. Sollten Sie die Fotos daher auf andere Weise verwenden wollen, kontaktieren Sie bitte redaktion@ruhr-uni-bochum.de

Veröffentlicht

Donnerstag
11. April 2024
09:37 Uhr

Von

Yvonne Kasper

Teilen