Daniel Mann, Klaus Gerwert und Carsten Kötting (von links) nutzten unter anderem Computersimulationen, um herauszufinden, in welchem Zustand sich der Bindungspartner des Ras-Proteins befindet. © RUB, Kramer

Biophysik Forscher beobachten Details der Schaltung des Ras-Proteins

Wie eine bezweifelte Hypothese zur Gewissheit geworden ist.

Ras-Proteine sind molekulare Schalter, die in unserem Körper entscheiden, ob und wann Zellen sich teilen. Ist ihre Funktion gestört, können sich zum Beispiel Tumore bilden. Weitere Details des An- und Ausschaltens konnte ein Forscherteam um Prof. Dr. Klaus Gerwert vom Lehrstuhl für Biophysik der RUB dank kombinierter Methoden ermitteln und somit die Hypothese bestätigen, dass der Bindungspartner von Ras im gebundenen Zustand keine Wasserstoffatome an den Phosphaten enthält. Das renommierte Journal of Biological Chemistry widmet dem Bericht über diese Arbeit seinen Titel vom 16. März 2018.

Wie Krebs entstehen kann

Ras-Proteine funktionieren wie kleine Schalter: Abhängig davon, ob sie Guanosin-Triphosphat (GTP) oder Guanosin-Diphosphat (GDP) gebunden haben, sind sie an- oder ausgeschaltet. Die Bindung an GTP setzt komplexe Signalwege in Gang, die im Zellkern münden und dort die Zellteilung einleiten. Ras-Proteine werden anschließend wieder inaktiviert, indem sie vom gebundenen Molekül Guanosin-Triphosphat eine Phosphat-Gruppe abspalten und so Guanosin-Diphosphat erzeugen.

Wird dieser Prozess gestört, zum Beispiel durch Mutationen im Ras-Protein, verweilt Ras in seinem aktiven Zustand, und es kann sich durch anhaltende Zellteilung ein Tumor bilden.

Wie viele Wasserstoffe?

Um die GTP-Spaltungs-Reaktion in Ras zu verstehen, brauchen die Forscher ein genaues Bild des Startpunktes, also wie genau GTP gebunden an Ras aussieht. Dazu gehört die Frage, ob die drei Phosphatgruppen des GTP-Moleküls Wasserstoffatome besitzen, da sie als Säure wirken und zum Beispiel gelöst in Wasser ein Wasserstoffatom tragen.

3D-Filme mit subatomarer Auflösung

Wasserstoff lässt sich allerdings mit den üblichen Verfahren wie der Röntgenkristallographie meist nicht direkt messen. Es wurde bisher vermutet, dass die Phosphat-Gruppen von GTP gebunden an Ras frei von Wasserstoffatomen sind. Nachdem daran Zweifel aufgekommen waren, führten die RUB-Forscher weitergehende Messungen und Simulationen durch, mit deren Hilfe sie 3D-Filme mit atomarer Auflösung erstellen konnten. „Mit dieser Präzision war es dann endlich möglich, den genauen Wasserstoffgehalt von GTP gebunden an das Ras-Protein zu ermitteln: Die Phosphatgruppen von GTP tragen in der Tat keine Wasserstoff-Atome“, fasst Klaus Gerwert zusammen.

Veröffentlicht

Dienstag
20. März 2018
11:20 Uhr

Von

Meike Drießen

Teilen