Jump to navigation

Logo RUB
  • Corona-Infos
  • Studium
  • Forschung
  • Transfer
  • News
  • Über uns
  • Einrichtungen
 
MENÜ
  • RUB-STARTSEITE
  • News
  • Wissenschaft
  • Studium
  • Transfer
  • Leute
  • Hochschulpolitik
  • Kultur und Freizeit
  • Vermischtes
  • Servicemeldungen
  • Serien
  • Dossiers
  • Bildergalerien
  • Presseinformationen
    • Abonnieren
  • RUB in den Medien
    • Abonnieren
  • Rubens
  • Rubin
    • Abonnieren
    • Printarchiv
  • Archiv
  • English
  • Redaktion

Newsportal - Ruhr-Universität Bochum

Presseinformation
Drei Forscher im Labor.
Sie bringen Licht ins Zusammenspiel der Proteine: Klaus Gerwert, Carsten Kötting und Daniel Mann (von links)
© RUB, Marquard
Proteinforschung

Molekulare Schalter im Detail erforscht

Bei allen möglichen Prozessen im Körper haben molekulare Schalter das Sagen. Funktionieren sie nicht, werden wir krank.

Sehen, Riechen, Schmecken, Blutdruckregulation – an allen diesen Prozessen sind molekulare Schalter beteiligt. Den Mechanismus, mit dem diese Proteine ausgeschaltet werden, hat ein Forscherteam der Ruhr-Universität Bochum (RUB) um Prof. Dr. Klaus Gerwert und Privatdozent Dr. Carsten Kötting untersucht. Sie nutzten dafür die Infrarotspektroskopie (FTIR) und Computersimulationen und konnten den Prozess auf subatomarer Ebene beschreiben. Die Wissenschaftler berichten in der Fachzeitschrift Proceedings of the National Academy of Sciences (PNAS).

Für das Ausschalten vieler Proteinschalter ist das Energiespeichermolekül GTP entscheidend, das an die Proteine gebunden ist. Spaltet ein Enzym eine Phosphatgruppe von GTP ab, wird das Schalterprotein ausgeschaltet. Diese sogenannte GTP-Hydrolyse läuft innerhalb von Sekunden ab und wird vor allem von einer besonderen Aminosäure erledigt, dem Arginin-Finger. Funktioniert dieser Prozess nicht richtig, kommt es zum Beispiel zur Cholera-Erkrankung. Wie der Arginin-Finger genau arbeitet, konnten die Forscher dank einer Kombination aus Methoden der Biologie, der theoretischen Physik und der Experimentalphysik erstmals im Detail beschreiben.

Mikroskop mit subatomarer Auflösung

Eine am RUB-Lehrstuhl für Biophysik etablierte Methode erlaubt es, enzymatische Prozesse mit hoher zeitlicher und räumlicher Auflösung in ihrem natürlichen Zustand zu verfolgen. Es handelt sich dabei um eine besondere Form der Spektroskopie, die zeitaufgelöste Fourier-Transform-Infrarotspektroskopie, kurz FTIR. Allerdings geben die damit gemessenen Daten keine Auskunft darüber, an welcher Stelle des Enzyms ein Prozess gerade stattfindet. Diese Information können die Forscher durch quantenmechanische Computersimulationen von Strukturmodellen gewinnen. „Durch Kombination von Theorie und Experiment erhält man so ein Mikroskop mit subatomarer Auflösung“, erklärt Klaus Gerwert.

Mit diesem Ansatz fanden die Forscher im Detail heraus, wie die GTP-Hydrolyse beschleunigt wird: Der Arginin-Finger wechselt beim schnellen Ausschalten wie bei einem Fingerschnipp die Position.

Defekter Schalter kann zu Krebs führen

Dieses Ergebnis ist bedeutend, weil der enzymatische Prozess der GTP-Hydrolyse als molekularer Schalter häufig vorkommt. Die Mechanismen der verschiedenen Schaltprozesse im Körper unterscheiden sich nur im Detail. Die GTP-Hydrolyse ist zum Beispiel auch ein Schalter für das Protein Ras, dessen Fehlfunktion zu unkontrolliertem Zellwachstum bei Tumoren führt. „Indem wir die Ergebnisse unserer Untersuchungen an verschiedenen Schaltprozessen verknüpfen, bringen wir immer weitere Details der GTP-Hydrolyse ans Licht“, so Carsten Kötting.

So visualisierten die Wissenschaftler spektroskopisch den Zustand des Arginin-Fingers gebunden an das GTP-Molekül mit einer Genauigkeit von einem Hundertstel Atomdurchmesser. Der Arginin-Fingerschnipp hat große Auswirkungen auf Geometrie und Ladungsverteilung des Bindungspartners. „Unser Fernziel ist es, durch diese Grundlagenforschung einmal zur Entwicklung von Medikamenten gegen Krebs und schwerwiegende Erbkrankheiten beizutragen“, so Daniel Mann vom Forscherteam.

Förderung

Die Deutsche Forschungsgemeinschaft förderte die Arbeiten im Rahmen des Sonderforschungsbereichs 642.

Originalveröffentlichung

Daniel Mann, Christian Teuber, Stefan Tennigkeit, Grit Schröter, Klaus Gerwert, Carsten Kötting: Mechanism of the intrinsic Arginine Finger in heterotrimeric G-Proteins, in: Proceedings of the National Academy of Sciences, 2016, DOI: 10.1073/pnas.1612394113

Pressekontakt

Privatdozent Dr. Carsten Kötting
Lehrstuhl für Biophysik
Fakultät für Biologie und Biotechnologie
Ruhr-Universität Bochum
Tel.: 0234 32 24873
E-Mail: carsten.koetting@rub.de

Prof. Dr. Klaus Gerwert
Lehrstuhl für Biophysik
Fakultät für Biologie und Biotechnologie
Ruhr-Universität Bochum
Tel.: 0234 32 24461
E-Mail: gerwert@bph.rub.de

Download hochauflösender Bilder
Der Download der gewählten Bilder erfolgt als ZIP-Datei.
Bildzeilen und Bildnachweise finden Sie nach dem Entpacken in der enthaltenen HTML-Datei.
Nutzungsbedingungen
Die Verwendung der Bilder ist unter Angabe des entsprechenden Copyrights für die Presse honorarfrei. Die Bilder dürfen ausschließlich für eine Berichterstattung mit Bezug zur Ruhr-Universität Bochum verwendet werden, die sich auf die Inhalte des Artikels bezieht, der den Link zum Bilderdownload enthält.
Ich akzeptiere die Nutzungsbedingungen.
Veröffentlicht
Mittwoch
7. Dezember 2016
09.37 Uhr
Von
Meike Drießen (md)
Share
Teilen
Das könnte Sie auch interessieren
Forscherin im Gewächshaus
Biologie

Eine Achillesferse, die Tiere und Pflanzen teilen

Thomas Happe
Biologie

Ein Gift hilft Wasserstoff produzierende Biokatalysatoren zu verstehen

Lars Schäfer, Thomas Happe und Ulf-Peter Apfel
Biologie

Biokatalysatoren vor Sauerstoff schützen

Derzeit beliebt
KI: Das Bochumer Team mit Projektleiter Peter Salden, Nadine Lordick, Jonas Loschke und Maike Wiethoff (von links)
Künstliche Intelligenz

Bochumer Projekt schafft Klarheit zu KI-Tools für NRW-Hochschulen

Arne Ludwig
Physik

Die Kopplung zweier Quantenpunkte ist erstmals gelungen

Benedikt Göcke, Blue Square, Veranstaltung
Religion

Existiert Gott?

 
Mehr Wissenschaft
Ressort
 
Zur Startseite
News
  • A-Z
  • N
  • K
Logo RUB
Impressum | Kontakt
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

Datenschutz
Barrierefreiheit
Impressum
Schnellzugriff
Service und Themen
Anreise und Lagepläne
Hilfe im Notfall
Stellenangebote
Social Media
Facebook
Twitter
YouTube
Instagram
Seitenanfang y Kontrast N
Impressum | Kontakt