Unterwasserplasmen Plasmen in Flüssigkeiten zünden
Wie sich Nanosekunden-Plasma über Tunnel-Effekte in Wasser ausbilden und ausbreiten kann.
Forschenden der Ruhr-Universität Bochum (RUB) gelingt es, den Zündungsprozess von Plasma unter Wasser anzuschauen und zeitscharf zu verfolgen. Physikerin Dr. Katharina Grosse liefert die ersten Datensätze mit sehr hoher Zeitauflösung und unterstützt so eine neue Hypothese zur Zündung dieser Unterwasserplasmen: Im Nanosekundenbereich reicht die Zeit nicht aus, um eine Gasumgebung zu formen. Elektronen, die durch Feldeffekte erzeugt werden, führen zur Ausbreitung des Plasmas. Das Nanosekunden-Plasma zündet direkt in der Flüssigkeit, unabhängig von dem Vorzeichen der Spannung. Über die Forschung des Bochumer Teams vom Sonderforschungsbereich 1316 „Transiente Atmosphärendruckplasmen: vom Plasma zu Flüssigkeiten zu Festkörpern“ berichten das Journal of Applied Physics und Rubin, das Wissenschaftsmagazin der RUB.
Plasmaentwicklung sichtbar machen
Wie das Plasma in kurzer Zeit zündet und wie die Zündung in der Flüssigkeit überhaupt erst möglich wird, hat Katharina Grosse untersucht. Dazu legt die Physikerin an eine haarfeine, in Wasser untergetauchte Elektrode für zehn Nanosekunden eine hohe Spannung an. Das so erzeugte starke elektrische Feld führt zur Zündung des Plasmas. Mittels schneller optischer Spektroskopie in Kombination mit einer Modellierung der Flüssigkeitsdynamik gelingt es der Bochumer Forscherin, Leistung, Druck und Temperatur in diesen Unterwasserplasmen vorherzusagen und somit den Zündungsprozess und die Plasmaentwicklung im Nanosekundenbereich aufzuklären.
Ihre Beobachtung: Zum Zeitpunkt der Zündung existieren extreme Verhältnisse im Wasser. Kurzzeitig entstehen Drücke von vielen Tausend Bar, was dem Druck am tiefsten Punkt im Pazifik entspricht oder diesen sogar übersteigt, sowie Temperaturen von vielen tausend Grad ähnlich zur Oberflächentemperatur der Sonne.
Tunneleffekte unter Wasser
Die Aufnahmen stellen die bisher gängige Theorie infrage. Diese ging bislang davon aus, dass sich an der Spitze der Elektrode eine hohe negative Druckdifferenz bildet, die dazu führt, dass sich in der Flüssigkeit sehr kleine Risse mit Ausdehnungen im Bereich von Nanometern bilden, in denen sich dann das Plasma ausbreiten kann. „Man nahm an, dass eine Elektronenlawine sich in den Rissen unter Wasser bildet und damit die Zündung des Plasmas möglich macht“, so Achim von Keudell, Inhaber des Lehrstuhls für Experimentalphysik II. Die Aufnahmen des Bochumer Forschungsteams legen jedoch nahe, dass das Plasma „lokal innerhalb der Flüssigkeit gezündet wird“, erklärt Grosse.
Bei ihrem Erklärungsansatz bedient sich die Physikerin am quantenmechanischen Tunneleffekt. Er beschreibt die Tatsache, dass Teilchen eine Energiebarriere überqueren können, die sie nach den Gesetzen der klassischen Physik eigentlich nicht überqueren können dürften, weil sie dafür selbst zu wenig Energie besitzen. „Schaut man sich die Aufnahmen der Plasmazündung an, so deutet alles darauf hin, dass einzelne Elektronen durch die Energiebarriere der Wassermoleküle zu der Elektrode hin tunneln und dort das Plasma lokal zünden, und zwar genau dort, wo das elektrische Feld am höchsten ist“, sagt Grosse. Eine Theorie, für die viel spricht und in der Fachwelt für große Diskussionen sorgt.
Wasser wird in seine Bestandteile zerlegt
So faszinierend der Zündungsprozess unter Wasser ist, so vielversprechend sind auch die Ergebnisse der chemischen Reaktion für die Praxis. Die Emissionsspektren zeigen, dass die Wassermoleküle bei Nanosekunden-Pulsen keine Gelegenheit mehr haben, den Druck des Plasmas auszugleichen. Durch die Plasmazündung werden sie in ihre Bestandteile zerlegt, atomaren Wasserstoff und Sauerstoff. Letzterer reagiert gern mit Oberflächen. Und hier genau liegt das große Potenzial, erklärt Physikerin Grosse: „Der frei gewordene Sauerstoff kann möglicherweise katalytische Oberflächen in elektrochemischen Zellen re-oxidieren, sodass sie regeneriert werden und ihre katalytische Aktivität wieder voll entfalten können.“