Im Hochdurchsatz sollen Proteine identifiziert werden.
© Julian Uzskoreit

Proteinfoschung Künstliche Intelligenz hilft Proteine erkennen

Zwei Projekte sollen die Proteinanalyse schneller und treffsicherer machen.

Veränderungen in Proteinen können die Ursache für Krankheiten wie Krebs, Alzheimer oder Parkinson sein. Zwei neue Projekte in der Proteinforschung der RUB sollen die Analyse im Hochdurchsatz treffsicherer und schneller machen. Die Medizinische Fakultät der RUB fördert in ihrem Forum-Förderprogramm die Vorbereitung einer breiteren Datenbasis zum Abgleich veränderter Proteine mit rund 66.000 Euro. Das Bundesministerium für Bildung und Forschung gibt 230.000 Euro für ein darauf aufbauendes Projekt, in dem Deep-Learning-Methoden helfen sollen, die Proteinerkennung effizienter zu machen.

Erkannt wird nur, was in der Datenbank ist

Die Massenspektrometrie ist eine Standardmethode für die Analyse von Proteinen. Proteine aus komplexen Proben werden zunächst vorverdaut und in Stücke geschnitten. Die Stücke, sogenannte Peptide, werden dann im Hochdurchsatz analysiert, indem die gemessenen Spektren mit theoretischen Spektren von Peptiden in einer Datenbank verglichen werden. „Mit diesem Ansatz kann man aber nur die Peptide identifizieren, die auch in der zugrunde liegenden Datenbank enthalten sind“, verdeutlicht Projektleiter Dr. Julian Uszkoreit. Varianten oder unbekannte Peptide werden nicht erkannt.

Mehr Daten, größere Unschärfe

Eine Vielzahl von bekannten Varianten ist in der meistgenutzten Datenbank, der Uniprot KB, sogar schon verzeichnet. Allerdings werden sie nur selten bei der Identifikation von Peptiden verwendet. Zum einen ist das Herunterladen der nötigen Daten für Endnutzer kompliziert. Zum anderen führt die Berücksichtigung aller Varianten zu einer stark vergrößerten Suchdatenbank und damit zu statistischen Problemen.

Im Forum-Projekt „Verbesserung der MS/MS-basierten Peptididentifikation durch die Nutzung annotierter Sequenzvarianten und -modifikationen“ wollen die Forscher ein Tool entwickeln, das den Export der großen Datenbank vereinfacht.

Außerdem wollen sie das Problem der Unschärfe angehen. Ihr Ansatz dafür ist wesentlich rechenaufwändiger als der bisherige, weswegen das Team auf eine cloudbasierte Lösung setzt. „Für diesen Ansatz muss eine Datenbank mit allen berücksichtigten verdauten Peptiden erstellt werden“, so Julian Uszkoreit. „In dieser Datenbank kann nach den Gewichten der Peptide gesucht werden, was bis dato nicht möglich ist und nicht nur für die beschriebene Anwendung nützlich ist, sondern einen erheblichen Mehrwert für die gesamte Proteomics-Community haben kann.“

Auch ganz neue Peptidsequenzen erkennen

Das Projekt „Deep Learning for Protein Variants Detection“, kurz Deprovideo, setzt genau dort an und soll helfen, die großen Datenmengen der Proteindatenbank schneller und treffsicherer zu nutzen.

Veröffentlicht

Dienstag
21. April 2020
09:31 Uhr

Teilen