Der Mittelmeerraum muss sich künftig auf extreme Trockenheit einstellen. An einige Standorte, die derzeit zur Energiegewinnung genutzt werden, wird dafür künftig eventuell nicht mehr genügend Wasser verfügbar sein.
© Damian Gorczany

Hydrologie Modell simuliert globales Wasserangebot

Technologien mit geringem CO2-Ausstoß stehen im Fokus der Energiewende. Sie verbrauchen teils jedoch enorme Mengen Wasser. Wasser, das in vielen Regionen künftig nicht ausreichend zur Verfügung stehen wird.

Wasserkraft, Biomasse-Verstromung, Windkraft, Wasserstoff, Fotovoltaik – diese Begriffe kommen schnell in den Sinn, wenn es um den Energiemix der Zukunft geht. Ein Energiemix, der dem Klimawandel die Stirn bieten soll, indem er den CO2-Ausstoß begrenzt. Dabei wird jedoch häufig nicht bedacht, welche langfristigen Folgen für das Wasserangebot in einer Region solche Technologien haben, zum Beispiel weil Wasser zur Kühlung benötigt wird. Prof. Dr. Martina Flörke, Professorin für Ingenieurhydrologie und Wasserwirtschaft an der Ruhr-Universität Bochum (RUB), plädiert dafür, nicht nur auf die CO2-Emissionen zu schauen, sondern auch andere Umwelteinflüsse zu berücksichtigen – beispielsweise die Auswirkungen auf Wasserressourcen. Mit ihrem Team hat sie ein Modell verwendet, das die Wasserverfügbarkeit und den Wasserbedarf weltweit berechnen kann. Über die Arbeit berichtet das Wissenschaftsmagazin Rubin der RUB.

Wasserangebot bis ins Jahr 2300 prognostizieren

Das Modell, genannt „WaterGAP3“, teilt die Landmasse der Erde in 2,2 Millionen Rasterzellen ein und besitzt damit eine geografische Auflösung von fünf Bogenminuten. Am Äquator entspricht das einer Zellengröße von neun mal neun Quadratkilometern. Für jede Landzelle fütterten die Forscherinnen und Forscher physiografische und meteorologische Daten in das Modell, etwa die Landbedeckung, Bodenbeschaffenheit, tägliche Niederschlagsmenge, Temperatur und Sonneneinstrahlung. Der Algorithmus simuliert darauf basierend den terrestrischen Wasserkreislauf: wie viel Niederschlag in jeder Zelle in den Boden einsickert, verdunstet und wie viel zur Abflussbildung beiträgt und dann als Direkt- und Grundwasserabfluss in Flüssen und Grundwasserleitern zur Verfügung steht. Die Simulation kann in vorindustrielle Zeiten zurückblicken und bis ins Jahr 2300 Prognosen abgeben.

So berechnete die Gruppe die Wasserverfügbarkeit weltweit, wobei sie nur erneuerbare Wasserressourcen betrachtete, also keine fossilen tiefen Grundwasservorkommen. Der Wasserverfügbarkeit stellte das Team dann die geplante Wasserentnahme entgegen. Dazu bezogen sie auch 48.000 Standorte von Energiegewinnungsanlagen und deren Wasserverbrauch ein.

Wasserbedarfe durch Energieproduktion berechnet

Um eine Prognose für das Jahr 2040 abgeben zu können, stützten sich die Forschenden auf vier Zukunftsszenarien, die Greenpeace und die International Energy Agency aufgestellt hatten. Diese 2014/15 vorgestellten Szenarien beschreiben, wie sich der Energiemix in Zukunft entwickeln könnte. Ein Szenario beschreibt etwa, mit welchen Energieformen es möglich wäre, die Klimaerwärmung auf zwei Grad Celsius zu begrenzen und setzt dabei viel auf Fotovoltaik, Solarkraftwerke, Biomasseverstromung, Wind- und Wasserkraft.

Diesen Energiemix der vier Szenarien bildeten die Forschenden in ihrem Modell nach. Dabei gingen sie davon aus, dass künftig an den Standorten, die zum Beispiel heute schon mittels Fotovoltaik Energie produzieren, künftig mehr Strom mit diesem Verfahren erzeugt werden wird. „Wir können natürlich nicht wissen, an welchen Standorten künftig weitere Fotovoltaikanlagen entstehen werden, daher können wir in unserem Modell nur mit den derzeit existierenden Standorten arbeiten – auch wenn das sicher eine Schwachstelle ist, weil künftig auch an anderen Standorten produziert werden wird“, erklärt Martina Flörke.

Die Kernaussage der Berechnungen ist davon aber nicht betroffen: An bis zu 42 Prozent der Standorte ist ein Defizit zu erwarten, weil dort künftig mehr Wasser benötigt wird als verfügbar ist. „Und dabei ist noch nicht mit in Betracht gezogen, dass in diesen Regionen eventuell auch noch aus anderen Gründen der Wasserbedarf steigen könnte, etwa weil durch Klimawandeleffekte die Felder vermehrt bewässert werden müssen“, ergänzt die Wissenschaftlerin.

Mittelmeerraum muss sich auf extreme Trockenheit einstellen

Wasserdefizite seien vor allem im Westen Amerikas, im mittleren Osten und Norden Afrikas, in Südeuropa sowie in einzelnen Spots im Süden und Osten Chinas und Indiens zu erwarten. „Gerade im Mittelmeerraum ist es sehr wahrscheinlich, dass Trockenheitsextreme häufiger werden“, so Flörke. Es gebe daher einige Standorte, die derzeit zur Energiegewinnung genutzt würden, die man grundsätzlich hinterfragen müsse. „Die Modellanalyse zeigt uns deutlich, dass es auf jeden Fall nicht förderlich wäre, die Energieproduktion an den jetzigen Standorten auszuweiten“, folgert die Bochumer Forscherin. Außerdem brauche es effizientere Technologien, Speichermöglichkeiten für Wasser und Energie sowie Alternativen zum Frischwassereinsatz, zum Beispiel aufbereitetes Abwasser.

Forschungsprojekt WANDEL

Die beschriebenen Arbeiten waren eingebettet in das offiziell Ende 2020 abgeschlossene Forschungsprojekt „WANDEL – Wasserressourcen als bedeutsamer Faktor der Energiewende auf lokaler und globaler Ebene“, das Martina Flörke zunächst an der Universität Kassel, dann an der RUB koordinierte.

Ausführlicher Beitrag in Rubin

Einen ausführlichen Beitrag zu dem Thema finden Sie im Wissenschaftsmagazin Rubin. Für redaktionelle Zwecke dürfen die Texte auf der Webseite unter Angabe der Quelle „Rubin – Ruhr-Universität Bochum“ sowie Bilder aus dem Downloadbereich unter Angabe des Copyrights und Beachtung der Nutzungsbedingungen honorarfrei verwendet werden.

Pressekontakt

Prof. Dr. Martina Flörke
Lehrstuhl für Ingenieurhydrologie und Wasserwirtschaft
Fakultät für Bau- und Umweltingenieurwissenschaften
Ruhr-Universität Bochum
Tel.: +49 234 32 24693
E-Mail: martina.floerke@hydrology.rub.de

Veröffentlicht

Montag
11. Oktober 2021
09:06 Uhr

Teilen