Jump to navigation

Logo RUB
  • Energiesparen
  • Studium
  • Forschung
  • Transfer
  • News
  • Über uns
  • Einrichtungen
 
MENÜ
  • RUB-STARTSEITE
  • News
  • Wissenschaft
  • Studium
  • Transfer
  • Leute
  • Hochschulpolitik
  • Kultur und Freizeit
  • Vermischtes
  • Servicemeldungen
  • Serien
  • Dossiers
  • Bildergalerien
  • Presseinformationen
    • Abonnieren
  • RUB in den Medien
  • Rubens
  • Rubin
    • Abonnieren
    • Printarchiv
  • Archiv
  • English
  • Redaktion

Newsportal - Ruhr-Universität Bochum

Presseinformation
Arne Ludwig
Arne Ludwig war für das Design und die Herstellung der Halbleiterstrukturen für das Experiment verantwortlich.
© RUB, Kramer
Physik

Die Kopplung zweier Quantenpunkte ist erstmals gelungen

Das bedeutet einen großen Schritt zur technischen Anwendbarkeit der Quantentechnologie etwa für Rechenoperationen.

Eine winzig kleine Veränderung bedeutet in der Quantenphysik einen großen Durchbruch: Einem internationalen Forschungsteam aus Bochum und Kopenhagen ist es gelungen, zwei Quantenpunkte in einem Nanochip zu koppeln. Nach der Anregung eines Quantenpunktes mittels eines Lasers wird ein Signal ausgesendet, dessen Ursprung nicht mehr auf einen der Quantenpunkte zu beziehen ist, so als hätten beide je die Hälfte des Signals in Form eines einzelnen Photons ausgesandt. „Das klingt zunächst nach einem kleinen Erfolg, aber diese Signalverschränkung, die auf einem einzelnen Photon sitzt, ist dabei mehr als die Summe ihrer Teile“, sagt Dr. Arne Ludwig vom Lehrstuhl für Festkörperphysik der Ruhr-Universität Bochum. „Es bedeutet einen großen Schritt hin zur Nutzbarkeit der Quantentechnologie für Computeroperationen.“ Gemeinsam mit Forschenden des Niels-Bohr-Instituts der Universität Kopenhagen hat das Bochumer Team die Ergebnisse in der Zeitschrift Science vom 27. Januar 2023 veröffentlicht.

Abermillionen Quantenpunkte auf einem Wirtskristall

Der Bochumer Part der aufwändigen Arbeiten umfasste das Design und die Herstellung der Halbleiterstrukturen für das Experiment. „Beim Bandstruktur-Engineering entwickeln wir Strukturen, in der sich künstliche Atome, sogenannte Quantenpunkte, gezielt ansteuern, kontrollieren und von den Umgebungsfluktuationen abschirmen lassen“, erklärt Arne Ludwig. Diese Struktur muss dann in einer hochreinen Ultrahochvakuumumgebung unter Berücksichtigung oberflächenphysikalischer Prozesse auf einem Wirtskristall hergestellt werden. Diesen Arbeitsschritt hat Dr. Sven Scholz, damals Promotionsstudent bei Arne Ludwig und Lehrstuhlinhaber Prof. Dr. Andreas Wieck, unter der Anleitung von Arne Ludwig übernommen. Anschließend werden die Eigenschaften der Strukturen optisch und elektronisch vermessen, die Ergebnisse analysiert und Parameter für optimierte Strukturen erarbeitet. „In der Halbleiterstruktur befinden sich viele Milliarden Quantenpunkte, von denen jeder einen Durchmesser von nur rund zehn Nanometern hat“, beschreibt Arne Ludwig. „Könnten wir all diese Quantenpunkte miteinander koppeln und für Quantenrechenoperationen kontrollieren, so hätten wir einen unvorstellbar mächtigen Computer. Dies allerdings ist derzeit noch völlig utopisch.“

Der Weg zum Nanochip

In Abstimmung mit den Forschenden in Kopenhagen wurden die Strukturen dann weiter optimiert, bis elektrische Felder, quantenmechanische Energieniveaus, optische Reflektionseigenschaften und die Kopplung zwischen Photonen und den Quantenpunkten stimmen. In Kopenhagen wurde die Struktur weiterbearbeitet und zu einem Nanochip verfeinert. Mittels Laser lassen sich in diesem Bauteil dann einzelne Quantenpunkte anregen. Durch die Kopplung folgt daraus die Aussendung einzelner Photonen aus zwei dieser Quantenpunkte.

Illustration eines Chips mit zwei verschränkten Quantenlichtquellen
© Niels-Bohr-Institut der Universität Kopenhagen

„Die Besonderheit an dieser optischen Kommunikation liegt darin, dass wir in dem Lichtsignal Informationen absolut abhörsicher transportieren können“, erklärt Arne Ludwig. Die Kopplung zweier Quantenpunkte ist zum ersten Mal gelungen und bedeutet einen großen Schritt hin zur Anwendbarkeit der Quantentechnologie für technische Zwecke. Moderne Computerchips bestehen aus mehreren Milliarden Transistoren, die jeweils als eins oder null, also binär geschaltet werden können. 100 Photonen aus einem einzelnen Quantenpunkt hingegen weisen dabei eine Komplexität auf, die die von modernen Großrechenanlagen bei weitem übersteigt. „Der Schritt von einem Quantenpunkt zu zweien scheint ein kleiner Beitrag zu sein, ist aber eine fundamental wichtige Hürde, die wir mit den Kollegen aus Kopenhagen nun genommen haben,“ so Arne Ludwig. Peter Lodahl, leitender Wissenschaftler des Teams am Niels-Bohr-Institut, führt weiter aus: „Gelänge es, 20 bis 30 Quantenpunkte zu koppeln, so eröffnete sich damit die Möglichkeit, einen universellen, Fehler-korrigierten Quantencomputer zu bauen – der ultimative Heilige Gral der Quantentechnologie. Unser Beitrag zeigt einen wichtigen Schritt auf, wie dies gelingen kann. Die Strukturen, die Arne Ludwig in Bochum entwickelt, sind einzigartig auf der Welt. Sie sind in ihrer Qualität unübertroffen und erlauben diesen großen Fortschritt.”

Förderung

Die Arbeiten wurden gefördert von Danmarks Grundforskningsfond (DNRF 139, Hy-Q Center for Hybrid Quantum Networks), die Deutsche Forschungsgemeinschaft (Förderkennzeichen 449674892), die Europäische Union im Rahmen des Marie-Skłodowska-Curie-Projekts Nr. 801199, die Deutsch-Französische Hochschule (CDFA-05-06) sowie das Bundesministerium für Bildung und Forschung (QR.X Projekt 16 KISQ 009).

Originalveröffentlichung

Alexej Tiranov et al.: Collective super- and subradiant dynamics between distant optical quantum emitters, in: Science, 2023, DOI: 10.1126/science.ade932

Pressekontakt

Dr. Arne Ludwig
Lehrstuhl für Festkörperphysik
Fakultät für Physik und Astronomie
Ruhr-Universität Bochum
Tel.: +49 234 32 25864
E-Mail: arne.ludwig@rub.de

Angeklickt

Berichte über bisherige Arbeiten:

  • Neue Erkenntnisse über die Energieniveaus in Quantenpunkten
  • Eine brillante Quelle für Einzelphotonen
  • Photonenzwillinge ungleicher Herkunft
Download hochauflösender Bilder
Der Download der gewählten Bilder erfolgt als ZIP-Datei.
Bildzeilen und Bildnachweise finden Sie nach dem Entpacken in der enthaltenen HTML-Datei.
Nutzungsbedingungen
Die Verwendung der Bilder ist unter Angabe des entsprechenden Copyrights für die Presse honorarfrei. Die Bilder dürfen ausschließlich für eine Berichterstattung mit Bezug zur Ruhr-Universität Bochum verwendet werden, die sich auf die Inhalte des Artikels bezieht, der den Link zum Bilderdownload enthält.
Ich akzeptiere die Nutzungsbedingungen.
Veröffentlicht
Freitag
27. Januar 2023
14.03 Uhr
Von
Meike Drießen (md)
Share
Teilen
Das könnte Sie auch interessieren
Grafik gekoppelter Photonen
Physik

Forschende erzeugen exotischen Quantenlicht-Zustand

Teilchenbahnen
Astrophysik

Simulation hilft bei der Suche nach dem Ursprung kosmischer Strahlung

Luftbild der Ruhr-Universität Bochum
Förderung

Storys in der Wirtschaft und Zufälle in der Quantenphysik

Derzeit beliebt
Klebefäden zwischen zwei Oberflächen
Teilchenphysik

Der Kleber, der Materie zusammenhält

Landkarte auf einem Tablet
ERC Advanced Grant

Mit Tricks zur besseren inneren Landkarte

Porträt
ERC ADVANCED GRANT

Umdenken für neue und sichere Verschlüsselungen

 
Mehr Wissenschaft
Ressort
 
Zur Startseite
News
  • A-Z
  • N
  • K
Logo RUB
Impressum | Kontakt
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

Datenschutz
Barrierefreiheit
Impressum
Schnellzugriff
Service und Themen
Anreise und Lagepläne
Hilfe im Notfall
Stellenangebote
Social Media
Facebook
Twitter
YouTube
Instagram
Seitenanfang y Kontrast N
Impressum | Kontakt