Jump to navigation

Logo RUB
  • Studium
  • Forschung
  • Transfer
  • News
  • Über uns
  • Einrichtungen
 
MENÜ
  • RUB-STARTSEITE
  • News
  • Wissenschaft
  • Studium
  • Transfer
  • Leute
  • Hochschulpolitik
  • Kultur und Freizeit
  • Vermischtes
  • Servicemeldungen
  • Serien
  • Dossiers
  • Bildergalerien
  • Presseinformationen
    • Abonnieren
  • RUB in den Medien
  • Rubens
  • Rubin
    • Abonnieren
    • Printarchiv
  • Archiv
  • English
  • Redaktion

Newsportal - Ruhr-Universität Bochum

Presseinformation
Autorenteam
Lars Schäfer, Claudia Brocks und Thomas Happe (von links) haben an der Studie zusammengearbeitet.
© RUB, Marquard
Biologie

Biokatalysator vor Sauerstoff schützen

Gezielte genetische Kanalveränderungen können Wasserstoff-produzierende Enzyme vor schädlichem Sauerstoff schützen.

Auf Wasserstoff ruhen große Hoffnungen für die Energiewende. Eine bestimmte Enzymgruppe, die in Algen und in Bakterien vorkommt, kann molekularen Wasserstoff allein durch die Katalyse von Protonen und Elektronen erzeugen. Allerdings ist die Enzymgruppe so empfindlich gegenüber Sauerstoff, dass eine wirtschaftliche Nutzung des so produzierten Wasserstoffs als grüne Energiequelle noch nicht möglich ist. Forschende des Exzellenzclusters RESOLV und des Graduiertenkollegs Microbial Substrate Conversion der Ruhr-Universität Bochum konnten die Sauerstoffstabilität eines Wasserstoff-produzierenden Enzyms durch genetisch erzeugte Kanalblockaden steigern. Die Forschenden um Prof. Dr. Thomas Happe, Leiter der Arbeitsgruppe Photobiotechnologie, Prof. Dr. Lars Schäfer, Prof. Dr. Eckhard Hofmann und Prof. Dr. Ulf-Peter Apfel berichten in der Zeitschrift ChemSusChem vom 13. Oktober 2023.

Blockierte Kanäle führen zur gesteigerten Sauerstoffstabilität

Ein Metalloenzym mit besonders hohen katalytischen Umsatzraten von molekularem Wasserstoff ist die [FeFe]-Hydrogenase. „Der Umsatz des Wasserstoffs findet am aktiven Zentrum, dem H-Cluster, im Inneren des Enzyms statt“, erklärt Thomas Happe. „Der im Inneren produzierte Wasserstoff bewegt sich durch Kanäle aus dem Enzym heraus. „Wird das Enzym hingegen molekularem Sauerstoff ausgesetzt, bewegt sich der Sauerstoff von der Enzymoberfläche bis ins Innere zum H-Cluster ebenfalls durch spezifische Kanäle“, ergänzt Erstautorin Claudia Brocks. Das H-Cluster wird bei geringstem Sauerstoffkontakt zerstört und kann keinen weiteren Wasserstoff produzieren.

Dem Bochumer Forschungsteam gelang es durch eine interdisziplinäre Methodenkombination aus ortsgerichteter Mutagenese, Elektrochemie, Röntgenkristallografie sowie Molekulardynamik-Simulationen, die Sauerstoffstabilität des [FeFe]-Hydrogenase Enzyms CpI zu steigern und den Sauerstoffschutzeffekt aufzuklären. „Gezielte genetische Veränderungen an einem Enzymkanal veränderten das Hydrogenase-Enzym CpI so, dass wir elektrochemisch eine deutliche Steigerung der Sauerstofftoleranz und der Sauerstoffresistenz feststellen konnten“, erklärt Claudia Brocks. „Wir haben Molekulardynamik-Simulationen genutzt, um Kanalveränderungen zu untersuchen. Bei unserer Analyse konnten wir Blockaden in einem neu identifizierten dynamischen Wasserkanal nahe des H-Clusters identifizieren“. Thomas Happe ergänzt: „Der Schutzeffekt vor dem schädlichen Sauerstoff basiert auf dieser Kanalblockade. Sauerstoff kann nur erschwert bis zum H-Cluster vordringen. Lokale Strukturveränderungen können zu deutlichen Veränderungen in der Proteindynamik führen.“

Förderung

Die Arbeiten wurden gefördert durch die Deutsche Forschungsgemeinschaft im Rahmen des Exzellenzclusters Ruhr Explores Solvation RESOLV (EXC 2033 – 390677874) und des Graduiertenkollegs GRK 2341 „Microbial Substrate Conversion (MiCon)“.

Originalveröffentlichung

Claudia Brocks et al.: A dynamic water channel affects O2 stability in [FeFe] Hydrogenases, in: ChemSusChem, 2023, DOI: 10.1002/cssc.202301365

Pressekontakt

Prof. Dr. Thomas Happe
Arbeitsgruppe Photobiotechnologie
Pflanzenbiochemie
Fakultät für Biologie und Biotechnologie
Ruhr-Universität Bochum
Tel.: +49 234 32 27026
E-Mail: thomas.happe@ruhr-uni-bochum.de

Download hochauflösender Bilder
Der Download der gewählten Bilder erfolgt als ZIP-Datei.
Bildzeilen und Bildnachweise finden Sie nach dem Entpacken in der enthaltenen HTML-Datei.
Nutzungsbedingungen
Die Verwendung der Bilder ist unter Angabe des entsprechenden Copyrights für die Presse honorarfrei. Die Bilder dürfen ausschließlich für eine Berichterstattung mit Bezug zur Ruhr-Universität Bochum verwendet werden, die sich auf die Inhalte des Artikels bezieht, der den Link zum Bilderdownload enthält.
Ich akzeptiere die Nutzungsbedingungen.
Veröffentlicht
Freitag
27. Oktober 2023
09.10 Uhr
Von
Meike Drießen (md)
Share
Teilen

Chemie in Lösung

Beim Lösen einer chemischen Substanz passiert viel mehr, als wir bislang ahnen. Was genau wollen Forschungsgruppen an der Ruhr-Universität herausfinden.

Mehr aus dem Dossier
Das könnte Sie auch interessieren
Probenauftrag
Mikrobiologie

Kleine Kugeln retten Enzyme für die Biokatalyse

Autorenteam
Biologie

Biokatalysator vor Sauerstoff schützen

Porträt Marc Nowaczyk
Biologie

Durchbruch auf dem Weg zur biologischen Solarzelle

Derzeit beliebt
Gruppenfoto mit Patientin
Immuntherapie

Vom Rollstuhl aufs Fahrrad

Porträt Alfed Ludwig
Neuer Sonderforschungsbereich

9 Millionen Euro für die Materialforschung an der RUB

Blick in den Untersuchungsraum
Innovative Bildgebung

Post-Covid und Muskelschmerz

 
Mehr Wissenschaft
Ressort
 
Zur Startseite
News
  • A-Z
  • N
  • K
Logo RUB
Impressum | Kontakt
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

Datenschutz
Barrierefreiheit
Impressum
Schnellzugriff
Service und Themen
Anreise und Lagepläne
Hilfe im Notfall
Stellenangebote
Social Media
Facebook
Twitter
YouTube
Instagram
Seitenanfang y Kontrast N
Impressum | Kontakt