Bochum research team: Kristina Tschulik and Pouya Hosseini © RUB, Kramer

Elektrochemie Wie Katalysatoren heimlich ihre Stabilität verlieren

Kovalente organische Gerüstverbindung sind als Katalysatoren aktiver, als man erwarten würde. Wie das sein kann, haben Forschende nun entschlüsselt.

Kovalente organische Gerüstverbindungen sind als Katalysatoren deutlich weniger stabil als bislang gedacht und dennoch aktiv. Die sogenannten COFs – aus dem Englischen für covalent organic frameworks – gelten als vielversprechende Katalysatoren, beispielsweise für die nachhaltige Produktion von Chemikalien und Brennstoffen. Ihre Eigenschaften können durch ihren molekularen Aufbau sehr gezielt eingestellt werden. Forschende der Ruhr-Universität Bochum und der Max-Planck-Institute für Festkörperforschung (MPI-FKF) und für Nachhaltige Materialien (MPI-NM) zeigten jedoch, dass die katalytische Aktivität gar nicht durch die COFs selbst entsteht. Stattdessen lösen sich die Cobalt-Ionen aus dem Gerüst und wandeln sich in Nanopartikel um, welche die katalytische Arbeit erledigen. Die Ergebnisse beschreibt das Team in der Zeitschrift „Advanced Science“, online veröffentlicht am 26. November 2024.

„Mit dem Wissen aus dieser Studie können wir künftig Katalysatoren aus organischen Gerüstverbindungen und Nanopartikeln designen, die deutlich effizienter sind als die COFs“, sagt Prof. Dr. Kristina Tschulik von der Ruhr-Universität Bochum und vom Exzellenzcluster RESOLV, die gemeinsam mit Prof. Dr. Bettina Lotsch vom MPI-FKF die Idee für die Studie hatte. „Als Elektrochemikerin habe ich mich schon immer ein bisschen gewundert, wie die katalytische Aktivität der COFs eigentlich zustande kommt“, sagt Kristina Tschulik – sie wollte es genauer wissen.

Stabil unter harschen Reaktionsbedingungen?

Die Bochumer Gruppe um Kristina Tschulik startete eine Kooperation mit Stuttgarter Forschenden um Bettina Lotsch, die Expertinnen und Experten für die Synthese von COFs sind. Beide Gruppen sind Teil des an der Universität Stuttgart beheimatetn Sonderforschungsbereiches 1333. Gemeinsam analysierte das Team um Pouya Hosseini, Andrés Rodríguez-Camargo und Liang Yao die katalytische Aktivität mehrerer Cobalt-haltiger COFs bei der sogenannten Sauerstoffentwicklungsreaktion. Diese Teilreaktion tritt in vielen industriell bedeutenden Reaktionen auf, beispielsweise bei der Elektrolyse von Wasser zwecks Wasserstoffgewinnung. „Die Reaktionsbedingungen bei der Sauerstoffentwicklungsreaktion sind harsch“, erklärt Kristina Tschulik. „Eigentlich gibt es nur einen Katalysator – Iridiumoxid –, der dabei stabil bleibt.“ Es mehrten sich jedoch Studien, die berichteten, dass auch Cobalt-haltige COFs langzeitstabil bei der Reaktion seien.

Im ersten Schritt analysierte das Forschungsteam die COFs elektrochemisch bei der Sauerstoffentwicklungsreaktion. In der Tat lief die Stoffumwandlung mit hoher Aktivität über mehrere Zyklen. Die dabei aufgezeichneten Strompotenzial-Kurven hatte Kristina Tschulik jedoch schon mal in einem anderen Kontext gesehen. Im Rahmen des Sonderforschungsbereichs 247 arbeitet die Wissenschaftlerin seit sieben Jahren mit Cobaltoxid-Nanopartikeln als Katalysatoren, die genau diese Kurvenform erzeugen. Daher startete die Gruppe eine aufwendigere Materialcharakterisierung, gemeinsam mit Elektronenmikroskopie-Experten vom MPI-NM um Christina Scheu.

Gerüste verhindern Verklumpen von Nanopartikeln

In diesen Analysen zeigte sich, dass aus den Cobalt-haltigen Gerüstverbindungen oxidische Cobalt-Nanopartikel entstehen, die die katalytische Arbeit übernehmen. Die Umwandlung erfolgt sofort, wenn die Elektrode in die basische Lösung eingetaucht wird. „Die COF-Gerüste erfüllen aber trotzdem einen Zweck“, erklärt Tschulik ein weiteres Ergebnis der Analysen. „Sie halten die Nanopartikel fest. Normalerweise neigen die Partikel dazu zu aggregieren, wodurch weniger von ihrer katalytischen Oberfläche zugänglich ist.“

Die Autorinnen und Autoren geben in ihrer Publikation auch Anregungen, wie man COFs künftig gezielt herstellen könnte, sodass die Gerüstverbindungen auch unter realen Reaktionsbedingungen stabil und katalytisch aktiv bleiben.

Förderung

Die Deutsche Forschungsgemeinschaft unterstützte die Arbeiten im Rahmen der Sonderforschungsbereiche TRR 247 (Projekt 388390466) und SFB 1333 (Projekt 358283783), im Rahmen der Exzellenzcluster RESOLV (EXC 2033-390677874) und e-conversion (EXC 2089/1–390776260) sowie im Rahmen des Schwerpunktprogramms 2370 (Projektnummer 502202153). Weitere Unterstützung kam vom Max Planck Fellowship Programm, dem Bayrischen Forschungsnetzwerk SolTech und der Alexander von Humboldt-Stiftung.

Originalveröffentlichung

Pouya Hosseini, Andrés Rodríguez-Camargo, Yiqun Jiang, Siyuan Zhang, Christina Scheu, Liang Yao, Bettina V. Lotsch, Kristina Tschulik: Shedding Light on the Active Species in a Cobalt-Based Covalent Organic Framework for the Electrochemical Oxygen Evolution Reaction, in: Advanced Science, 2024, DOI: 10.1002/advs.202413555

Pressekontakt

Prof. Dr. Kristina Tschulik
Elektrochemie und nanoskalige Materialien
Fakultät für Chemie und Biochemie
Ruhr-Universität Bochum
Tel.: +49 234 32 29433
E-Mail: nanoec@ruhr-uni-bochum.de

Webseite der Arbeitsgruppe

Download hochauflösender Bilder
Der Download der gewählten Bilder erfolgt als ZIP-Datei. Bildzeilen und Bildnachweise finden Sie nach dem Entpacken in der enthaltenen HTML-Datei.
Nutzungsbedingungen
Die Verwendung der Bilder ist unter Angabe des entsprechenden Copyrights für die Presse honorarfrei. Die Bilder dürfen ausschließlich für eine Berichterstattung mit Bezug zur Ruhr-Universität Bochum verwendet werden, die sich ausschließlich auf die Inhalte des Artikels bezieht, der den Link zum Bilderdownload enthält. Mit dem Download erhalten Sie ein einfaches Nutzungsrecht zur einmaligen Berichterstattung. Eine weitergehende Bearbeitung, die über das Anpassen an das jeweilige Layout hinausgeht, oder eine Speicherung der Bilder für weitere Zwecke, erfordert eine Erweiterung des Nutzungsrechts. Sollten Sie die Fotos daher auf andere Weise verwenden wollen, kontaktieren Sie bitte redaktion@ruhr-uni-bochum.de

Veröffentlicht

Dienstag
26. November 2024
13:14 Uhr

Teilen