Kohlenstoff-Nanoröhren sind bunt. Ihre Farbpracht offenbaren sie aber nur, wenn eine wässrige Lösung ausschließlich Röhrchen mit einem bestimmten Durchmesser enthält.

© RUB, Kramer

Biochemie

Kohlenstoff-Nanoröhren als Sensoren für die personalisierte Medizin

Im Labor von Sebastian Kruss überrascht Kohlenstoff mit verschiedenen Farben. Die Bochumer Forschenden experimentieren mit den bunten Winzlingen für biomedizinische Anwendungen.

Liegt Kohlenstoff in Form von dünnen Röhren vor, leuchtet er – je nach Durchmesser der Röhre – in verschiedenen Farben. Diesen Umstand machen sich Bochumer Forschende zu Nutze. Sie verwenden Kohlenstoff-Nanoröhren als Sensoren und experimentieren mit ihnen für verschiedene biomedizinische Anwendungen, zum Beispiel im Rahmen der personalisierten Medizin für Parkinson-Patienten. Über die Arbeiten berichtet Prof. Dr. Sebastian Kruss, Leiter der Arbeitsgruppe Biophotonik und funktionale Materialien der Ruhr-Universität Bochum, im Wissenschaftsmagazin Rubin der Ruhr-Universität.

Botenstoff Dopamin nachweisbar

Die eingesetzten Nanoröhren bestehen aus einem wabenförmigen Kohlenstoff-Geflecht und sind 100.000-mal dünner als ein menschliches Haar. Scheint sichtbares Licht auf sie, fluoreszieren sie. Das heißt, sie senden Licht einer anderen Wellenlänge aus, als eingestrahlt wurde, und zwar im Nahinfrarot-Bereich. Die Bochumer Gruppe zeigte unter anderem, dass sich mit dieser Technik der Botenstoff Dopamin nachweisen lässt, der eine wichtige Rolle bei der Parkinson-Erkrankung spielt.

Bindung verändert Leuchten

Trifft ein Dopamin-Molekül auf eine passend modifizierte Nanoröhre, dockt das Dopamin an der Oberfläche des Röhrchens an, was deren Leuchten im Nahinfrarot-Bereich verändert; es leuchtet heller. Diesen Unterschied können die Bochumer Biochemikerinnen und Biochemiker mit eigens dafür gebauten Mikroskopen erfassen. Zusammen mit Kooperationspartnern aus Duisburg, gelang es Sebastian Kruss’ Gruppe die Konzentration von Dopamin mithilfe der Kohlenstoff-Nanoröhren als Sensor zu messen. Und das nicht nur in einer standardisierten Pufferlösung, sondern auch die direkte Freisetzung aus Zellen unter Bedingungen wie im menschlichen Körper. „Letzteres ist viel komplizierter, weil zum Beispiel Blut alle möglichen Bestandteile enthält, die die Messung stören können“, verdeutlicht Kruss.

Präzise Messungen für die personalisierte Medizin

Anwendungen der Methode sind für die personalisierte Medizin denkbar. Menschen mit Parkinson-Krankheit erhalten zur Behandlung häufig L-Dopa, eine Vorstufe des Dopamins. „Die L-Dopa-Menge muss sich in einem bestimmten therapeutischen Fenster bewegen“, erläutert Sebastian Kruss. Eine zu geringe oder zu hohe Menge wirkt sich negativ auf die Symptome aus. „Eine bestimmte Dosis kann für einen Patienten optimal sein, für eine andere Patientin aber nicht“, führt der Biochemiker weiter aus. An einem solchen Test, der ähnlich wie eine Blutzucker-Messung funktionieren könnte, arbeiten die Bochumer Forschenden gemeinsam mit Partnern des Fraunhofer Instituts für mikroelektronische Schaltungen und Systeme in Duisburg.

Ausführlicher Artikel im Wissenschaftsmagazin Rubin

Welche Anwendungen der Nanoröhren-Sensoren noch denkbar wären, unter anderem zur Kommunikation mit smarten Pflanzen, lesen Sie in einem ausführlichen Artikel im Wissenschaftsmagazin Rubin mit dem Schwerpunkt „Licht und Leuchten“.  Für redaktionelle Zwecke dürfen die Texte auf der Webseite unter Angabe der Quelle „Rubin – Ruhr-Universität Bochum“ sowie Bilder aus dem Downloadbereich unter Angabe des Copyrights und Beachtung der Nutzungsbedingungen honorarfrei verwendet werden.

Rubin kann über ein Online-Formular kostenlos als Newsletter oder Printausgabe abonniert werden.

Pressekontakt

Prof. Dr. Sebastian Kruß
Biophotonik und funktionale Materialien
Fakultät für Chemie und Biochemie
Ruhr-Universität Bochum
Tel.: +49 234 32 29946
E-Mail: sebastian.kruss@ruhr-uni-bochum.de
Webseite der Arbeitsgruppe

Veröffentlicht

Dienstag
21. Oktober 2025
08:25 Uhr

Teilen