Jump to navigation

Logo RUB
  • Corona-Infos
  • Studium
  • Forschung
  • Transfer
  • News
  • Über uns
  • Einrichtungen
 
MENÜ
  • RUB-STARTSEITE
  • News
  • Wissenschaft
  • Studium
  • Transfer
  • Leute
  • Hochschulpolitik
  • Kultur und Freizeit
  • Vermischtes
  • Servicemeldungen
  • Serien
  • Dossiers
  • Bildergalerien
  • Presseinformationen
    • Abonnieren
  • RUB in den Medien
    • Abonnieren
  • Rubens
  • Rubin
    • Abonnieren
    • Printarchiv
  • Archiv
  • English
  • Redaktion

Newsportal - Ruhr-Universität Bochum

Forscher halten ein Reagenzglas mit dunkler Flüssigkeit in die Kamera.
Diesen Metallpartikeln in Lösung haben Forscherinnen und Forscher eine besondere Eigenschaft verpasst.
© RUB, Marquard
Chemie

Metallische Nano-Katalysatoren ahmen die Struktur von Enzymen nach

Die Natur ist bei der Katalyse teils effizienter als künstliche Systeme. Einen der Tricks haben sich Forscher abgeschaut.

Natürliche Enzyme besitzen bestimmte Strukturmerkmale, die ihnen eine besonders hohe katalytische Aktivität verleihen. Der Trick: Ihre aktiven Zentren, an denen die katalysierten Reaktionen stattfinden, befinden sich in Kanälen im Inneren der Enzyme, wo die Bedingungen für die Reaktion besonders günstig sind. Dieses Prinzip hat ein deutsch-australisches Forscherteam auf künstliche Katalysatoren übertragen. In winzigen Metallpartikeln erzeugten sie Kanäle, in denen sie eine chemische Reaktion stattfinden ließen. Im Inneren der Partikel lief die Reaktion dreimal effizienter ab als an der Oberfläche.

Die Ergebnisse beschreiben die Forscher vom RUB-Zentrum für Elektrochemie mit Kollegen der University of New South Wales im Journal of the American Chemical Society, online veröffentlicht am 23. September 2018.

Enormes Potenzial

Die Ergebnisse zeigen laut den Autoren das enorme Potenzial der Nanozyme. Sie wollen das Konzept nun mit verschiedenen chemischen Reaktionen testen und die Grundlagen der erhöhten katalytischen Aktivität detaillierter untersuchen.

Patrick Wilde, Wolfgang Schuhmann und Corina Andronescu (von links) mit einem Foto der australischen Kooperationspartner Tania Benedetti, Justin Gooding, Richard Tilley und Johanna Wordsworth (von links)
© RUB, Marquard

„In Zukunft möchten wir die Arbeitsweise der Enzyme noch besser nachahmen können“, sagt Prof. Dr. Wolfgang Schuhmann, Zentrum für Elektrochemie. „Letztendlich soll das Konzept zu industriellen Anwendungen beitragen, um Energieumwandlungsprozesse unter Nutzung von regenerativ erzeugtem Strom effizienter zu machen.“

Angeklickt
  • Ausführliche Presseinformation
Veröffentlicht
Donnerstag
8. November 2018
10.46 Uhr
Von
Julia Weiler (jwe)
Share
Teilen

Chemie in Lösung

Beim Lösen einer chemischen Substanz passiert viel mehr, als wir bislang ahnen. Was genau wollen zahlreiche Forschungsgruppen an der RUB herausfinden.

Mehr aus dem Dossier

Materialwissenschaft

Das gezielte Design von Werkstoffen mit bislang ungenutzten Eigenschaften soll neue Anwendungen möglich machen.

Mehr aus dem Dossier
Das könnte Sie auch interessieren
Porträt Martina Havenith-Newen
Zehn Jahre RESOLV

Als Außenseiter an die Weltspitze

Chemie: Forscher im Labor
CO2-Reduzierung

Den Kohlenstoffkreislauf via Elektrolyse schließen

Mikromaterialbibliothek
Materialforschung

Zehntausende mögliche Katalysatoren auf dem Durchmesser eines Haars

Derzeit beliebt
KI: Das Bochumer Team mit Projektleiter Peter Salden, Nadine Lordick, Jonas Loschke und Maike Wiethoff (von links)
Künstliche Intelligenz

Bochumer Projekt schafft Klarheit zu KI-Tools für NRW-Hochschulen

Viktoria Däschlein-Gessner
Chemie

ERC Consolidator Grant für Viktoria Däschlein-Gessner

Arne Ludwig
Physik

Die Kopplung zweier Quantenpunkte ist erstmals gelungen

 
Mehr Wissenschaft
Ressort
 
Zur Startseite
News
  • A-Z
  • N
  • K
Logo RUB
Impressum | Kontakt
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

Datenschutz
Barrierefreiheit
Impressum
Schnellzugriff
Service und Themen
Anreise und Lagepläne
Hilfe im Notfall
Stellenangebote
Social Media
Facebook
Twitter
YouTube
Instagram
Seitenanfang y Kontrast N
Impressum | Kontakt