Newsportal - Ruhr-Universität Bochum
Neue Katalysatorklasse für die Energieumwandlung
Viele der für die Energiewende wichtigen chemischen Reaktionen sind sehr komplex und laufen nur unter großen Energieverlusten ab. Das verhindert bisher die breite Anwendung von Energiewandlungs- und Speichersystemen oder Brennstoffzellen. Forscher der RUB und des Max-Planck-Instituts für Eisenforschung in Düsseldorf berichten nun von einer neuen, prinzipiell universell einsetzbaren Katalysatorklasse. Diese sogenannten Hochentropielegierungen basieren auf der ungewöhnlich gleichmäßigen Vermischung von meistens fünf Elementen. Sie könnten die seit Jahrzehnten unverrückbaren Grenzen herkömmlicher Katalysatoren sprengen. Die Hintergründe der Wirkungsweise sowie die Potenziale für eine systematische Nutzung beschreibt das Forscherteam im Journal ACS Energy Letters vom 17. April 2019.
Materialbibliotheken für die Elektrokatalyseforschung
Die Materialklasse der Hochentropielegierungen zeigt physikalische Eigenschaften, die für viele Anwendungen vielversprechend sind. Bei der Sauerstoffreduktion erreichten sie bereits die Aktivität eines Platinkatalysators.
„An unserem Lehrstuhl haben wir einzigartige Methoden, um diese komplexen Materialien aus fünf Ausgangselementen mit unterschiedlichen Zusammensetzungen in Form von Schicht- und Nanopartikelbibliotheken herzustellen“, berichtet Prof. Dr. Alfred Ludwig vom Lehrstuhl für Werkstoffe der Mikrotechnik der RUB. Die Atome der Ausgangselemente vermischen sich im Plasma und bilden in einem Substrat aus ionischer Flüssigkeit Nanopartikel. Je näher an einer der fünf Atomquellen sich ein Partikel bildet, desto höher ist der Anteil dieses Elements im Partikel. „In der Elektrokatalyse ist der Einsatz dieser Materialien bisher nahezu unerforscht“, so Ludwig.
Einzelne Reaktionsschritte beeinflussen
Das soll sich nun ändern. Die Forscher haben die einzigartigen Wechselwirkungen der verschiedenen benachbarten Elemente postuliert, die es ermöglichen, Edelmetalle gleichwertig ersetzen zu können. „Unsere neuesten Forschungen zeigen noch weitere Besonderheiten, zum Beispiel dass diese Klasse möglicherweise auch die Abhängigkeit der einzelnen Reaktionsschritte untereinander beeinflussen kann“, sagt Tobias Löffler, Doktorand am Zentrum für Elektrochemie am Lehrstuhl für Analytische Chemie der RUB. „Damit würde sie zur Lösung eines großen Problems der Energieumwandlung beitragen: der großen Energieverluste. Die theoretischen Möglichkeiten scheinen fast zu gut um wahr zu sein.“
Grundlage für weitere Forschung
Um schnell weitere Fortschritte in der Forschung zu erzielen, hat das Bochumer und Düsseldorfer Team seine ersten Erkenntnisse zur Deutung seiner Beobachtungen beschrieben, Herausforderungen erläutert und erste Richtlinien vorgeschlagen, die einen erfolgreichen Forschungsfortschritt versprechen.
6. Mai 2019
15.01 Uhr