Alfred Ludwig blickt in ein Fenster der Sputteranlage. © Christian Nielinger

Neues Projekt Legierungen, die sich selbst finden

Ein Team des Zentrums für Grenzflächendominierte Höchstleistungswerkstoffe sucht in atomaren Mischungen vieler unterschiedlicher Elemente neue Hochentropielegierungen, die für viele Anwendungen vielversprechend sind.

Materialien, die aus fünf oder mehr Elementen in annähernd gleicher Menge zusammengesetzt sind, könnten helfen, bisherige Grenzen zum Beispiel bei der Katalyse zu überwinden. Theoretisch gibt es Millionen Kombinationsmöglichkeiten – eine Herausforderung liegt darin, die richtigen zu finden. Dabei wählt ein Forschungsteam um Prof. Dr. Alfred Ludwig, Inhaber des Lehrstuhls Neue Materialien und Grenzflächen der RUB, einen unkonventionellen Weg: Es bringt 20 bis 30 Ausgangselemente in einer perfekten Ausgangsmischung zusammen, regt diese Mischung dann energetisch an und ermittelt mit atomarer Genauigkeit, welche komplexen Legierungen daraus entstehen. Das Projekt wird von der VolkswagenStiftung im Programm „Experiment! Auf der Suche nach gewagten Forschungsideen“ für 18 Monate mit rund 120.000 Euro gefördert.

Eigenschaften sind vielversprechend

Die sogenannten Hochentropielegierungen, englisch High Entropy Alloys, kurz HEA, versprechen unter anderem die Entwicklung neuartiger Elektrokatalysatoren auf der Basis ungiftiger und reichlich verfügbarer Elemente, die dieselbe Leistungsfähigkeit besitzen wie solche, die rar und teuer sind, weil sie zum Beispiel auf Platin oder Iridium basieren. „Es hat sich gezeigt, dass die Anzahl von fünf unterschiedlichen Elementen für solche Materialien entscheidend ist“, sagt Alfred Ludwig. Wie man in der Vielzahl der Kombinationsmöglichkeiten die richtigen schnell findet, ist Gegenstand der Forschung.

Hinweis: Beim Klick auf den Play-Button wird eine Verbindung mit einer RUB-externen Website hergestellt, die eventuell weniger strengen Datenschutzrichtlinien unterliegt und gegebenenfalls personenbezogene Daten erhebt. Weitere Informationen finden Sie in unserer Datenschutzerklärung. – Die datenschutzfreundliche Einbettung erfolgt via Embetty.

Für die aktuelle Studie baut das Forschungsteam auf eine spezielle Technik: In einer Sputteranlage werden Ausgangselemente in atomarer Form auf ein Trägermaterial aufgebracht, das aus vielen winzigen Siliziumspitzen besteht. Auf den Spitzen bildet sich ein kleines Volumen, das in nahezu keinem direkten Kontakt zum Trägermaterial steht. „Diese Ansammlungen von einigen Millionen Atomen auf jeder Spitze sind unser Nanoreaktor“, erklärt Alfred Ludwig. Mittels Atomsondentomografie können die Forschenden an diesen beschichteten Spitzen das entstandene Material untersuchen und zum Beispiel herausfinden, ob es stabil ist und bei welcher Temperatur sich die einzelnen Elemente wieder trennen. Die Atomsondentomografie erlaubt es, viele Millionen Atome und deren dreidimensionale Anordnung sichtbar zu machen und zwischen verschiedenen Elementen zu unterscheiden.

Die Atomprobentomografie-Anlage am Zentrum für Grenzflächendominierte Höchstleistungswerkstoffe der RUB © Christian Nielinger

Die Idee des neuen Projekts besteht darin, 20 bis 30 ungiftige und verfügbare Elemente gleichzeitig auf solche Siliziumträger zu sputtern und anschließend zu untersuchen, welche polyelementaren Kombinationen sich daraus bilden können. So sollen eine große Anzahl neuer HEAs effizient entdeckt werden.

Veröffentlicht

Freitag
12. März 2021
08:58 Uhr

Teilen