Jump to navigation

Logo RUB
  • Corona-Infos
  • Studium
  • Forschung
  • Transfer
  • News
  • Über uns
  • Einrichtungen
 
MENÜ
  • RUB-STARTSEITE
  • News
  • Wissenschaft
  • Studium
  • Transfer
  • Leute
  • Hochschulpolitik
  • Kultur und Freizeit
  • Vermischtes
  • Servicemeldungen
  • Serien
  • Dossiers
  • Bildergalerien
  • Presseinformationen
    • Abonnieren
  • RUB in den Medien
    • Abonnieren
  • Rubens
  • Rubin
    • Abonnieren
    • Printarchiv
  • Archiv
  • English
  • Redaktion

Newsportal - Ruhr-Universität Bochum

<div>
	Lea Schönherr ist Expertin für die Analyse von Audiodateien. Joel Frank ist spezialisiert auf KI-Algorithmen.</div>
Lea Schönherr ist Expertin für die Analyse von Audiodateien. Joel Frank ist spezialisiert auf KI-Algorithmen.
© RUB, Marquard
IT-Sicherheit

Gefälschte Sprachdateien erkennen

Künstliche Intelligenz kann die Stimmen von Personen imitieren. Betrüger nutzen das am Telefon bereits aus. Ein Bochumer Team arbeitet an Gegenmaßnahmen.

Maschinen können mithilfe von Künstlichen-Intelligenz-Algorithmen Fotos oder Sprachdateien erzeugen, die wie aus dem wahren Leben aussehen oder klingen. Wie man solche als Deepfakes bezeichneten künstlich erzeugten Daten von echten unterscheiden kann, interessiert Forschende am Horst-Görtz-Institut für IT-Sicherheit der RUB. Sie stellten fest, dass sich echte und gefälschte Sprachdateien im Bereich der hohen Frequenzen unterscheiden. Zuvor waren Deepfakes hauptsächlich bei Bildern untersucht worden. Die neuen Erkenntnisse sollen künftig helfen, auch gefälschte Sprache erkennen zu können.

Ihre Ergebnisse stellten Joel Frank vom Lehrstuhl für Systemsicherheit und Lea Schönherr aus der Arbeitsgruppe Kognitive Signalverarbeitung am 7. Dezember 2021 auf der Conference on Neural Information Processing Systems vor, die als Online-Veranstaltung abgehalten wurde. Die Arbeiten fanden im Rahmen des Exzellenzclusters CASA – Cybersecurity in the Age of Large-Scale Adversaries statt.

Großer Deepfake-Datensatz erzeugt

Als ersten Schritt erzeugten Joel Frank und Lea Schönherr einen umfangreichen Datensatz mit rund 118.000 künstlich erzeugten Sprachdateien. So entstanden etwa 196 Stunden Material auf Englisch und Japanisch. „Solch einen Datensatz für Audio-Deepfakes hat es zuvor nicht gegeben“, erklärt Lea Schönherr. „Um die Methoden zur Erkennung von gefälschten Audiodateien zu verbessern, braucht man aber dieses Material.“ Damit der Datensatz möglichst breit aufgestellt ist, nutzte das Team sechs verschiedene Künstliche-Intelligenz-Algorithmen beim Erzeugen der Audioschnipsel.

Hinweis: Beim Klick auf den Play-Button wird eine Verbindung mit einer RUB-externen Website hergestellt, die eventuell weniger strengen Datenschutzrichtlinien unterliegt und gegebenenfalls personenbezogene Daten erhebt. Weitere Informationen finden Sie in unserer Datenschutzerklärung. – Die datenschutzfreundliche Einbettung erfolgt via Embetty.

Anschließend verglichen die Forschenden die künstlichen Audiodateien mit Aufnahmen echter Sprache. Sie stellten die Dateien in Form von Spektrogrammen dar, die die Frequenzverteilung über die Zeit hinweg zeigen. Der Vergleich ergab feine Unterschiede im Bereich der hohen Frequenzen zwischen echten und gefälschten Dateien.

Diese Spektrogramme zeigen die Frequenzverteilung über die Zeit hinweg von einer echten (oben) und einer gefälschten Audiodatei (unten). Die kleinen Unterschiede in den hohen Frequenzen sind mit roten Kreisen markiert.
© RUB, Lehrstuhl für Systemsicherheit

Basierend auf diesen Erkenntnissen entwickelten Frank und Schönherr Algorithmen, die zwischen Deepfakes und echter Sprache unterscheiden können. Diese Algorithmen sind als Startpunkt für andere Forscher gedacht, um neue Erkennungsmethoden zu entwickeln.

Originalveröffentlichung

Joel Frank, Lea Schönherr: WaveFake: A data set to facilitate audio deepfake detection, Thirty-fifth Conference on Neural Information Processing Systems (NeurIPS) - Track for Datasets and Benchmarks, 2021, Online-Tagung, Paper-Download

Veröffentlicht
Montag
20. Dezember 2021
09.15 Uhr
Von
Julia Weiler (jwe)
Share
Teilen
Das könnte Sie auch interessieren
IT-Sicherheitsforscher Thorsten Holz mit einem Comic-Heft in der Hand
Exzellenzcluster CASA

Ein Comic über IT-Sicherheit

KI: Das Bochumer Team mit Projektleiter Peter Salden, Nadine Lordick, Jonas Loschke und Maike Wiethoff (von links)
Künstliche Intelligenz

Bochumer Projekt schafft Klarheit zu KI-Tools für NRW-Hochschulen

Doron Reichmann vor einem Rechner
Wirtschaftswissenschaft

Was Manager versehentlich verraten

Derzeit beliebt
KI: Das Bochumer Team mit Projektleiter Peter Salden, Nadine Lordick, Jonas Loschke und Maike Wiethoff (von links)
Künstliche Intelligenz

Bochumer Projekt schafft Klarheit zu KI-Tools für NRW-Hochschulen

Die neuen Gleichstellungsbeauftragten der RUB, Dr. Wanda Gerding (links) und Nadine Müller, stehen gemeinsam auf der Unibrücke. Im Hintergrund ist ein Teil des Campus zu sehen.
Erstmals als Tandem

Zwei neue Gleichstellungsbeauftragte wurden gewählt

Arne Ludwig
Physik

Die Kopplung zweier Quantenpunkte ist erstmals gelungen

 
Mehr Wissenschaft
Ressort
 
Zur Startseite
News
  • A-Z
  • N
  • K
Logo RUB
Impressum | Kontakt
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

Datenschutz
Barrierefreiheit
Impressum
Schnellzugriff
Service und Themen
Anreise und Lagepläne
Hilfe im Notfall
Stellenangebote
Social Media
Facebook
Twitter
YouTube
Instagram
Seitenanfang y Kontrast N
Impressum | Kontakt