Jump to navigation

Logo RUB
  • Studium
  • Forschung
  • Transfer
  • News
  • Über uns
  • Einrichtungen
 
MENÜ
  • RUB-STARTSEITE
  • News
  • Wissenschaft
  • Studium
  • Transfer
  • Leute
  • Hochschulpolitik
  • Kultur und Freizeit
  • Vermischtes
  • Servicemeldungen
  • Serien
  • Dossiers
  • Bildergalerien
  • Presseinformationen
    • Abonnieren
  • RUB in den Medien
  • Rubens
  • Rubin
    • Abonnieren
    • Printarchiv
  • Archiv
  • English
  • Redaktion

Newsportal - Ruhr-Universität Bochum

Porträt Nicolas Diekmann am Rechner
Nicolas Diekmann konnte mittels einer Künstlichen Intelligenz genauer aufklären, wie das Gehirn lernt.
© Privat
Neurowissenschaft

KI hilft Lernprozesse verstehen

Wie lernt das Gehirn räumliche Informationen? Dieser Frage sind Neuroinformatiker mit einer Künstlichen Intelligenz auf der Spur.

Forschende des Instituts für Neuroinformatik der Ruhr-Universität haben ein Computermodell konstruiert, das örtliche Informationen nach einem ähnlichen Muster lernt wie Nagetiere. Dabei werden einzelne Sequenzen von Nervenzellaktivitäten im Hippocampus nach bestimmten Prioritäten wiederholt abgespielt. Macht das die Künstliche Intelligenz genauso, lernt sie Rauminformationen schneller als bei zufälliger Wiederholung der Sequenzen. Nicolas Diekmann und Prof. Dr. Sen Cheng berichten in der in der Zeitschrift eLife vom 14. März 2023.

Im Schlaf lässt das Gehirn Strecken Revue passieren

Die Gehirnregion des Hippocampus spielt für das Gedächtnis eine wichtige Rolle. Studien an Nagetieren haben seine Rolle beim räumlichen Lernen und bei der Navigation belegt. Eine wichtige Entdeckung waren dabei Zellen, die an bestimmten Orten feuern, die sogenannten Ortszellen. „Sie sind an einem faszinierenden Phänomen beteiligt, das als Replay bekannt ist“, erklärt Nicolas Diekmann: „Wenn sich ein Tier fortbewegt, feuern bestimmte Ortszellen nacheinander entlang der Route des Tieres. Später in Ruhe oder im Schlaf können dieselben Ortszellen in der gleichen Reihenfolge wie erlebt oder in umgekehrter Reihenfolge reaktiviert werden.“

„Wir wollten wissen, wie der Hippocampus eine solche Vielfalt an Wiedergabearten effizient produziert und welchem Zweck sie dienen“, erklärt Nicolas Diekmann. Die Forschenden bauten daher ein Computermodell auf, in dem eine Künstliche Intelligenz Rauminformationen lernt. Es geht letztlich darum, wie schnell der KI-Agent einen Ausgang aus einer bestimmten räumlichen Situation findet. Je besser er sich darin auskennt, desto schneller ist er.

Abspielen nach bestimmten Regeln

Auch der KI-Agent lernt durch Wiederholen von neuronalen Sequenzen. Sie werden jedoch nicht zufällig abgespielt, sondern nach gewissen Regeln priorisiert. „Unser Modell ist biologisch plausibel, erzeugt einen überschaubaren Rechenaufwand und lernt schneller als Agenten, bei denen die Sequenzen zufällig abgespielt werden“, fasst Nicolas Diekmann zusammen. „Das zeigt uns ein wenig genauer, wie das Gehirn lernt.“

Angeklickt
  • Ausführliche Presseinformation
Veröffentlicht
Dienstag
9. Mai 2023
10.30 Uhr
Von
Meike Drießen (md)
Share
Teilen

Künstliche Intelligenz

Künstliche Intelligenzen spielen in Forschung, Lehre und Verwaltung der RUB aktuell und zukünftig eine entscheidende Rolle.

Mehr aus dem Dossier
Das könnte Sie auch interessieren
Interview
Hirnforschung

Kannste Vergessen? Der Podcast vom Lernen, Vergessen und Erinnern

Person vor einem Computer mit Lernmaterialien
Mechanismus entschlüsselt

Lernen und Gedächtnis mit Willenskraft verbessern

Person mit TMS-Spule am Kopf
Neurowissenschaft

Effekte der Hirnstimulation lassen sich konditionieren

Derzeit beliebt
Blick in den Untersuchungsraum
Innovative Bildgebung

Post-Covid und Muskelschmerz

Benedikt Göcke, Blue Square, Veranstaltung
Religion

Existiert Gott?

Hände tippen auf einem Laptop
Software

So geht die Registrierung für die kostenlose Office-365-Lizenz

 
Mehr Wissenschaft
Ressort
 
Zur Startseite
News
  • A-Z
  • N
  • K
Logo RUB
Impressum | Kontakt
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

Datenschutz
Barrierefreiheit
Impressum
Schnellzugriff
Service und Themen
Anreise und Lagepläne
Hilfe im Notfall
Stellenangebote
Social Media
Facebook
Twitter
YouTube
Instagram
Seitenanfang y Kontrast N
Impressum | Kontakt