Lukas Gooßen in his lab in Bochum
© RUB, Kramer

Neuartiges Verfahren Forscher stellen Biokraftstoff für konventionelle Dieselmotoren her

EU-Diesel hat gerade einmal einen Anteil von sieben Prozent Biodiesel. Mehr verkraften herkömmliche Motoren nicht. Noch nicht.

Laut einer EU-Richtlinie wird herkömmlichem Pkw-Diesel sieben Prozent Biodiesel beigemischt. Bis 2020 soll dieser Anteil auf zehn Prozent steigen. Aus technischer Sicht ist dies jedoch schwierig: Biodiesel siedet bei höheren Temperaturen, was zu Problemen bei elektronischen Einspritzanlangen und Rußpartikelfiltern führen kann. Forscher aus Kaiserslautern, Bochum und Rostock haben ein Verfahren entwickelt, mit dem sie aus konventionellem Biodiesel bei niedrigeren Temperaturen einen petrodiesel-ähnlichen Kraftstoff herstellen. Dieser kann unverdünnt in modernen Dieselmotoren zum Einsatz kommen. Die Forscher stellen ihre Arbeit in der renommierten Fachzeitschrift Science Advances vor.

Reiner Biodiesel macht Probleme

Biodiesel wird in Europa zum Großteil aus Rapsöl gewonnen. Chemisch gesehen besteht er aus langkettigen Kohlenwasserstoff-Verbindungen, sogenannten Fettsäuremethylestern. Er besitzt andere Eigenschaften als Diesel, der aus Mineralöl gewonnen wird. Der Siedepunkt ist zum Beispiel deutlich höher. Dadurch verdampft Biodiesel nur unvollständig und lagert sich auf Motorteilen ab. Dies macht ihn als alleinigen Kraftstoff ungeeignet. Einspritzpumpen, Dichtungen und Schläuche müssten anders konstruiert sein. „Autos, die mit reinem Biodiesel betankt werden, benötigen eigens dafür konzipierte Motoren“, sagt Prof. Dr. Lukas Gooßen.

Gemeinsam mit den Chemikern Kai Pfister und Sabrina Baader vom Sonderforschungsbereich 3-MET der Technischen Universität (TU) Kaiserslautern hat Gooßen eine Technik entwickelt, in der sie Biodiesel neuartig aufbereiten. „Wir überführen ein Gemisch aus Pflanzenfettestern und Bioethylen, eine weitere chemische Verbindung, fast ohne Energiezufuhr in einen Kraftstoff“, sagt Gooßen. „Dieser kann unverdünnt in modernen Dieselmotoren verbrannt werden.“

Eigenschaften des Kraftstoffs gezielt verändern

Das Besondere an der neuen Technik ist, dass die Forscher die chemischen Eigenschaften des Gemisches gezielt verändern können. „Wir kombinieren hierbei zwei katalytische Verfahren, mit denen wir die langkettigen Fettsäureester des Biodiesels in eine Mischung aus Verbindungen mit kürzeren Ketten umwandeln“, erläutert er den Prozess. Dadurch ändern sich etwa die Zünd- und Verbrennungseigenschaften des Biodiesels. So setzt der Verbrennungsprozess bei geringeren Temperaturen ein. „Wir können unseren Biodiesel so an die geltenden Normen für Petrodiesel anpassen“, fährt Gooßen fort. Darüber hinaus ist der Prozess recht umweltschonend: Es werden weder Lösungsmittel benötigt, noch entstehen Abfallprodukte.

Die beiden Verfahren wurden in mathematischen Simulationen von Mathias Baader von der TU Kaiserslautern aufeinander abgestimmt. Silvia Berndt von der Universität Rostock hat zudem den Nachweis erbracht, dass das Gemisch die strikte Norm (EN 590) für moderne Dieselmotoren erfüllt. In ersten Versuchen hat Kai Pfister bereits gezeigt, dass dieser neue Dieselkraftstoff ein Modellauto tatsächlich bewegen kann.

Förderung

Die Arbeiten fanden im Rahmen des Sonderforschungsbereichs 3-MET (SFB/TRR 88 „Kooperative Effekte in homo- und heterometallischen Komplexen“) an der TU Kaiserslautern und des Excellenzclusters Resolv (Ruhr Explores Solvation) an der Ruhr-Universität Bochum statt. Gefördert wurden sie zudem von der Deutschen Bundesstiftung Umwelt und der Carl-Zeiss-Stiftung.

Zu den Personen

Gooßen ist Evonik-Stiftungsprofessor für Organische Chemie an der Ruhr-Universität Bochum. Bis zum vergangenen Jahr forschte er an der TU Kaiserslautern, wo die neue Technologie entwickelt wurde. Seine Doktoranden Kai Pfister und Sabrina Baader haben ihre Promotion in der Zwischenzeit beendet und arbeiten nun in der Industrie.

Originalveröffentlichung

Kai F. Pfister, Sabrina Baader, Mathias Baader, Silvia Berndt, Lukas J. Goossen: Biofuel by isomerizing metathesis of rapeseed oil esters with (bio)ethylene for use in contemporary diesel engines, in: Science Advances, 2017, DOI: 10.1126/sciadv.1602624

Pressekontakt

Prof. Dr. Lukas Gooßen
Lehrstuhl für Organische Chemie I
Fakultät für Chemie und Biochemie
Ruhr-Universität Bochum
Tel.: 0234 32 19075
E-Mail: lukas.goossen@rub.de

Dr. Marc Prosenc
Technische Universität Kaiserslautern
Tel.: 0631 205 5185
E-Mail: prosenc@chemie.uni-kl.de

Download hochauflösender Bilder
Der Download der gewählten Bilder erfolgt als ZIP-Datei. Bildzeilen und Bildnachweise finden Sie nach dem Entpacken in der enthaltenen HTML-Datei.
Nutzungsbedingungen
Die Verwendung der Bilder ist unter Angabe des entsprechenden Copyrights für die Presse honorarfrei. Die Bilder dürfen ausschließlich für eine Berichterstattung mit Bezug zur Ruhr-Universität Bochum verwendet werden, die sich ausschließlich auf die Inhalte des Artikels bezieht, der den Link zum Bilderdownload enthält. Mit dem Download erhalten Sie ein einfaches Nutzungsrecht zur einmaligen Berichterstattung. Eine weitergehende Bearbeitung, die über das Anpassen an das jeweilige Layout hinausgeht, oder eine Speicherung der Bilder für weitere Zwecke, erfordert eine Erweiterung des Nutzungsrechts. Sollten Sie die Fotos daher auf andere Weise verwenden wollen, kontaktieren Sie bitte redaktion@ruhr-uni-bochum.de

Unveröffentlicht

Von

Melanie Löw

Teilen