Neurowissenschaft Standardmethoden könnten Ergebnisse verfälschen
Hirnnervenzellen sind Sensibelchen. Nur auf natürliche Signale reagieren sie normal. Neurowissenschaftler müssen daher vielleicht umlernen.
Wenn Neurowissenschaftler Nervenzellen bei ihrer Arbeit untersuchen, nutzen sie normalerweise ein standardisiertes Verfahren, bei dem die Zellen mit künstlichen Aktionspotenzialmustern elektrisch stimuliert werden. Das ist möglicherweise ein Fehler, wie das Team von Prof. Dr. Patrik Krieger von der Abteilung für Systemische Neurowissenschaften in der Medizinischen Fakultät der Ruhr-Universität Bochum (RUB) feststellt. Die Forscher haben statt der künstlichen Aktionspotenzialmuster natürliche Erregungsmuster verwendet und damit andere Ergebnisse erzielt. Ihre Studie veröffentlichten sie in der Fachzeitschrift Frontiers in Cellular Neuroscience.
An den Verbindungsstellen zwischen zwei Zellen, der Synapse, ist ein dünner Spalt, den die Zellen mit chemischen Signalen überbrücken. Wenn Nervenzellen synaptische Signale von anderen Nervenzellen empfangen, werden diese integriert und in ein Muster von elektrischen Aktionspotenzialen umgewandelt. Diese elektrischen Reize können wiederum andere Zellen stimulieren: Aktionspotenziale öffnen Kanäle in der Zellmembran, sodass Calciumionen einströmen. Diese Calciumionen setzen eine Reihe von zellulären Prozessen in Gang, die Forscher mit bildgebenden Methoden messen können.
Schnurrhaare bringen den Durchbruch
Patrik Krieger und seine Kollegen haben diese Dynamik am Beispiel von zwei unterschiedlichen Zelltypen in der Großhirnrinde von Ratten untersucht. Anstatt wie üblich jede Zelle mit den gleichen, künstlichen Mustern von elektrischen Signalen zu reizen, verwendeten die Forscher Signalmuster, die sie bei lebenden Ratten in genau diesen Zelltypen aufgezeichnet hatten, während die Tiere an den Schnurrhaaren stimuliert wurden.
Die verschiedenen Zelltypen im Gehirn der Ratten reagierten darauf unterschiedlich: Die einen Zellen feuerten in einer hohen Frequenz elektrische Signale ab, während die anderen in derselben Zeit weniger Aktionspotenziale erzeugten.
Calciumdynamik ist fein abgestimmt
Im nachfolgenden Versuch stimulierten die Forscher jeden Zelltyp einmal mit natürlichen Frequenzen und Feuermustern und einmal mit standardisierten künstlichen Frequenzen. Währenddessen maßen sie den Calciumeinstrom in die Zellen.
„Im Vergleich zeigte sich, dass bei beiden Zelltypen unter natürlichen Bedingungen dieselbe Menge Calcium einströmte, während es bei künstlichem Signalmuster unterschiedliche Mengen waren“, erklärt Patrik Krieger. „Das zeigt uns, dass die Calciumdynamik im Körper fein auf die jeweiligen Aktionspotenziale abgestimmt ist. So verhindert die Zelle eine Übersättigung. Darüber hinaus sind die Eigenschaften verschiedener Nervenzellen entsprechend ihrer Rolle im Gehirn fein eingestellt.“ In Zukunft wollen die Wissenschaftler untersuchen, ob sie ihr Ergebnis auch bei anderen Zelltypen im Gehirn bestätigen können.
„Wer Nervenzellen untersucht, sollte natürliche Frequenzen und Feuermuster verwenden, damit die Ergebnisse möglichst gut auf den lebenden Organismus übertragbar sind“, folgert Krieger.