Die Bochumer Forscher Martin Winkler, Oliver Lampret und Thomas Happe (von links nach rechts) gemeinsam mit Olaf Rüdiger (Mitte hinten) vom Max-Planck-Institut
© RUB, Marquard

Wasserstoffproduktion Proteinumfeld macht Katalysator effizient

Biokatalysatoren sind große Proteinmoleküle. Die eigentliche Reaktion findet dabei nur an einem kleinen Herzstück statt. Der Rest spielt aber auch eine Rolle.

Das Zusammenspiel von Proteinhülle und aktivem Zentrum in Wasserstoff produzierenden Enzymen ist entscheidend für die Effizienz der Biokatalysatoren. Ein Team der Ruhr-Universität Bochum und des Max-Planck-Instituts für Chemische Energiekonversion in Mülheim an der Ruhr analysierte speziell die Rolle von Wasserstoffbrückenbindungen in bestimmten Enzymen aus Grünalgen, den Hydrogenasen. Die Gruppen, die im Exzellenzcluster Resolv kooperieren, berichteten die Ergebnisse im „Journal of the American Chemical Society“.

„Die Erkenntnisse tragen nicht nur zum Verständnis dieser weltweit beachteten Biokatalysatorgruppe bei, sondern geben der angewandten Forschung zusätzlich wichtige Hinweise für die Entwicklung chemischer Katalysatoren nach Vorbild des hochaktiven Biomoleküls“, sagt Dr. Martin Winkler von der Bochumer Arbeitsgruppe Photobiotechnologie.

Leistungsfähigste Biokatalysatoren

Die Forscher untersuchten einen speziellen Typ von Hydrogenasen, sogenannte [FeFe]-Hydrogenasen. Sie bestehen aus einem Proteingerüst und einem aktiven Zentrum, H-Cluster genannt. Letzterer besteht aus sechs Eisen- und sechs Schwefelatomen sowie aus sechs ungewöhnlichen Bausteinen. Er bildet den Ort, an dem die eigentliche Wasserstoffsynthese aus Protonen und Elektronen stattfindet. „[FeFe]-Hydrogenasen gehören zu den leistungsfähigsten Biokatalysatoren überhaupt“, erklärt Prof. Dr. Thomas Happe, Leiter der Arbeitsgruppe Photobiotechnologie. Die Kommunikation zwischen H-Cluster und Proteinumgebung spielt dabei eine entscheidende Rolle.

Sie hilft bei der gezielten Anlieferung der Ausgangsstoffe für die Synthese und beim effizienten Abtransport des Produkts. „Außerdem sorgt die Proteinhülle für eine optimale räumliche Ausrichtung des H-Clusters und schützt ihn vor schädigenden Einflüssen“, ergänzt Oliver Lampret, der seine Doktorarbeit zu diesem Thema schreibt.

Manipulation der Wasserstoffbrücken

Die Bochumer Gruppe und ihre Mülheimer Kollegen Dr. Agnieszka Adamska-Venkatesh, Dr. Olaf Rüdiger und Prof. Dr. Wolfgang Lubitz zeigten, dass die Wasserstoffbrückenbindungen zwischen H-Cluster und Proteinumfeld die elektrochemischen Eigenschaften des aktiven Enzymzentrums maßgeblich beeinflussen. Sie entfernten einzelne Wasserstoffbrücken oder fügten zusätzliche hinzu und untersuchten die Effekte.

Die Manipulation veränderte sowohl die Elektronentransporteigenschaften des Enzyms als auch die katalytische Richtung, in die es arbeitet; denn Hydrogenasen können sowohl Wasserstoff produzieren als auch die umgekehrte Reaktion katalysieren, also die Spaltung von Wasserstoff in Protonen und Elektronen.

Den Einfluss der Wasserstoffbrücken belegten die Wissenschaftler mit drei verschiedenen Methoden: spektroskopisch, elektrochemisch und enzymkinetisch.

Förderung

Die Arbeiten wurden unterstützt von der Max-Planck-Gesellschaft, der Deutschen Forschungsgemeinschaft im Rahmen des Exzellenzclusters Resolv (EXC1069), der Deutsch-Israelischen Projektkooperation im Rahmen des Projekts „Nanoengineered Optobioelectronics with Biomaterials and Bioinspired Assemblies“ sowie der Volkswagen-Stiftung (LigH2t).

Originalveröffentlichung

Oliver Lampret, Agnieszka Adamska-Venkatesh, Hannes Konegger, Florian Wittkamp, Ulf-Peter Apfel, Edward J. Reijerse, Wolfgang Lubitz, Olaf Rüdiger, Thomas Happe, Martin Winkler: Interplay between CN Ligands and the Secondary Coordination Sphere of the H-Cluster in [FeFe]-Hydrogenases, Journal of the American Chemical Society, 2017, DOI: 10.1021/jacs.7b08735

Pressekontakt

Prof. Dr. Thomas Happe
Arbeitsgruppe Photobiotechnologie
Fakultät für Biologie und Biotechnologie
Ruhr-Universität Bochum
Tel.: 0234 32 27026
E-Mail: thomas.happe@rub.de

Dr. Martin Winkler
Arbeitsgruppe Photobiotechnologie
Fakultät für Biologie und Biotechnologie
Ruhr-Universität Bochum
Tel.: 0234 32 27049
E-Mail: martin.winkler-2@rub.de

Dr. Olaf Rüdiger
Abteilung Anorganische Spektroskopie
Max-Planck-Institut für Chemische Energiekonversion Mülheim an der Ruhr
Tel.: 0208 306 3526
E-Mail: olaf.ruediger@cec.mpg.de

Download hochauflösender Bilder
Der Download der gewählten Bilder erfolgt als ZIP-Datei. Bildzeilen und Bildnachweise finden Sie nach dem Entpacken in der enthaltenen HTML-Datei.
Nutzungsbedingungen
Die Verwendung der Bilder ist unter Angabe des entsprechenden Copyrights für die Presse honorarfrei. Die Bilder dürfen ausschließlich für eine Berichterstattung mit Bezug zur Ruhr-Universität Bochum verwendet werden, die sich ausschließlich auf die Inhalte des Artikels bezieht, der den Link zum Bilderdownload enthält. Mit dem Download erhalten Sie ein einfaches Nutzungsrecht zur einmaligen Berichterstattung. Eine weitergehende Bearbeitung, die über das Anpassen an das jeweilige Layout hinausgeht, oder eine Speicherung der Bilder für weitere Zwecke, erfordert eine Erweiterung des Nutzungsrechts. Sollten Sie die Fotos daher auf andere Weise verwenden wollen, kontaktieren Sie bitte redaktion@ruhr-uni-bochum.de

Veröffentlicht

Donnerstag
14. Dezember 2017
09:14 Uhr

Von

Julia Weiler

Teilen