Jump to navigation

Logo RUB
  • Energie
  • Studium
  • Forschung
  • Transfer
  • News
  • Über uns
  • Einrichtungen
 
MENÜ
  • RUB-STARTSEITE
  • News
  • Wissenschaft
  • Studium
  • Transfer
  • Leute
  • Hochschulpolitik
  • Kultur und Freizeit
  • Vermischtes
  • Servicemeldungen
  • Serien
  • Dossiers
  • Bildergalerien
  • Presseinformationen
    • Abonnieren
  • RUB in den Medien
    • Abonnieren
  • Rubens
  • Rubin
    • Abonnieren
    • Printarchiv
  • Archiv
  • English
  • Redaktion

Newsportal - Ruhr-Universität Bochum

Presseinformation
Sonneneruptionen
Die Oberfläche der Sonne
© NASA/GSFC/Solar Dynamics Observatory
Theoretische Physik

Wie die Magnetfelder in Sonne und Erde entstehen

Seit 2013 gibt ein französisches Experiment Forschern Rätsel auf. Computersimulationen liefern nun eine Erklärung für die zugrunde liegenden Mechanismen.

Neuartige Computersimulationen liefern eine Erklärung für seit Jahren nicht verstandene Ergebnisse eines Experiments, das die Prozesse nachgestellt hat, die dem Erdmagnetfeld zugrunde liegen. Wie genau die Magnetfelder von Erde, Sonne und Galaxien entstehen, ist nicht geklärt. Sie basieren auf komplexen Strömungen von flüssigem Metall oder Plasma im Inneren der Himmelsobjekte. Prof. Dr. Rainer Grauer und Dr. Sebastian Kreuzahler von der Ruhr-Universität Bochum beschreiben die Erkenntnisse mit Kollegen der Université de la Côte d’Azur und der École Normale Supérieure de Lyon in der Zeitschrift „Physical Review Letters“.

Erdmagnetfeld basiert auf Dynamo-Effekt

Der sogenannte Dynamo-Effekt erzeugt das Magnetfeld der Erde: Im Inneren des Planeten bewegt sich flüssiges, elektrisch leitfähiges Metall in komplexen Strömungsmustern. Dadurch entstehen elektrische Ströme und somit auch Magnetfelder, die wiederum die Strömung der Flüssigkeit beeinflussen.

Seit über 20 Jahren versuchen Forscher und Forscherinnen den Dynamo-Effekt im Labor nachzuahmen. Dieser stellt sich jedoch nur ein, wenn die Strömung der Flüssigkeit und das Magnetfeld ausreichend turbulent sind, was wiederum ein Experiment mit großen räumlichen Abmessungen und einem hinreichend starken Antrieb erfordert.

Experiment nur mit Weicheisen erfolgreich

Bisher gelang es nur in wenigen Experimenten, einen Dynamo-Effekt nachzustellen, wobei das sogenannte VKS-Experiment in Cadarache, Frankreich, im Jahr 2013 das bislang realitätsnächste war. Die Wissenschaftler kurbelten die Strömung von flüssigem Metall mit Antriebsrädern an. Waren die Antriebsräder aus Stahl, stellte sich allerdings kein Dynamo-Effekt ein. Dieser fand sich nur, wenn die Antriebsräder aus Weicheisen waren, das besondere magnetische Eigenschaften hat. „Wie dieser Unterschied zustande kommt, war lange unklar“, sagt Rainer Grauer. „Es gab unterschiedliche Deutungen.“

Mit neuartigen und aufwendigen Computersimulationen am Jülicher Superrechner Jugene und am französischen Superrechner Occigen stellte das Team die Bedingungen im Experiment mit korrekten Randbedingungen nach; dabei berücksichtigten sie etwa die genaue Geometrie der Antriebsräder und des Gefäßes, in dem das Originalexperiment stattgefunden hatte, und bildeten die magnetischen Eigenschaften realitätsnah nach. Aus den Daten entwickelten die Forscher eine Theorie, wie die Weicheisen-Antriebsräder die Entstehung des Dynamo-Effekts bewirken.

Struktur des Magnetfelds verstanden

Die Magnetfeldlinien wickeln sich aufgrund der Materialeigenschaften um die Antriebsräder auf, wobei die Forscher von einem verstärkten Omega-Effekt sprechen. Die spezielle Geometrie des Antriebs erzeugt zudem Wirbelstrukturen in der Flüssigkeit, die das Magnetfeld verstärken – Alpha-Effekt genannt. Den gemeinsamen resultierenden Effekt bezeichnen die Autoren als Alpha-Omega-Dynamo.

Anhand der Simulationsdaten beschrieben die Wissenschaftler auch die großskalige Struktur des Magnetfelds, das in dem VKS-Experiment erzeugt wurde. Frühere, stark vereinfachte Berechnungen waren davon ausgegangen, dass die Pole des Feldes in der Äquatorebene des experimentellen Aufbaus liegen müssten. Die aktuellen Erkenntnisse ergeben jedoch in Übereinstimmung mit dem Experiment, dass es sich um ein axiales Magnetfeld handelte.

Förderung

Die Arbeiten wurden anteilig finanziert von der Deutschen Forschungsgemeinschaft im Rahmen der Forschergruppe FOR 1048 und der französischen Agence Nationale de la Recherche (ANR-11-BLAN-045). Die Nutzung des IBM BlueGene/P-Computers Jugene am Forschungszentrum Jülich erfolgte im Rahmen des Projekts HBO40. Rechenzeit wurde außerdem in folgenden französischen Einrichtungen zur Verfügung gestellt: IDRIS/CINES/TGCC, Mesocentre SIGAMM am Observatoire de la Côte d’Azur sowie CICADA an der Universität Nice-Sophia.

Originalveröffentlichung

Sebastian Kreuzahler, Yannick Ponty, Nicolas Plihon, Holger Homann, Rainer Grauer: Dynamo enhancement and mode selection triggered by high magnetic permeability, in: Physical Review Letters, 2017, DOI: 10.1103/PhysRevLett.119.234501

Pressekontakt

Prof. Dr. Rainer Grauer
Computerorientierte Plasmaphysik
Institut für Theoretische Physik I
Fakultät für Physik und Astronomie
Ruhr-Universität Bochum
Tel.: 0234 32 23767
E-Mail: grauer@tp1.rub.de

Download hochauflösender Bilder
Der Download der gewählten Bilder erfolgt als ZIP-Datei.
Bildzeilen und Bildnachweise finden Sie nach dem Entpacken in der enthaltenen HTML-Datei.
Nutzungsbedingungen
Die Verwendung der Bilder ist unter Angabe des entsprechenden Copyrights für die Presse honorarfrei. Die Bilder dürfen ausschließlich für eine Berichterstattung mit Bezug zur Ruhr-Universität Bochum verwendet werden, die sich auf die Inhalte des Artikels bezieht, der den Link zum Bilderdownload enthält.
Ich akzeptiere die Nutzungsbedingungen.
Veröffentlicht
Donnerstag
21. Dezember 2017
12.25 Uhr
Von
Julia Weiler (jwe)
Share
Teilen
Das könnte Sie auch interessieren
Teilchenbahnen
Astrophysik

Simulation hilft bei der Suche nach dem Ursprung kosmischer Strahlung

Zwei Männer vor einer Tafel mit Formeln
Physik

Neue Methode zur Analyse von Supraleitern

Plasmaanwendung
Neuer Sonderforschungsbereich

Atmosphärendruckplasmen besser verstehen und technisch nutzen

Derzeit beliebt
KI: Das Bochumer Team mit Projektleiter Peter Salden, Nadine Lordick, Jonas Loschke und Maike Wiethoff (von links)
Künstliche Intelligenz

Bochumer Projekt schafft Klarheit zu KI-Tools für NRW-Hochschulen

Ein junger Mann mit schwarzem Kapuzenpulli sitzt in einer Hörsaalreihe und lächelt.
Politik und Studium

Dienstag Bachelorarbeit abgeben, Sonntag Bundestagsmandat gewinnen

Autorenteam
Medizin

Signalübertragung im Immun- und Nervensystem mithilfe von NEMO

 
Mehr Wissenschaft
Ressort
 
Zur Startseite
News
  • A-Z
  • N
  • K
Logo RUB
Impressum | Kontakt
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

Datenschutz
Barrierefreiheit
Impressum
Schnellzugriff
Service und Themen
Anreise und Lagepläne
Hilfe im Notfall
Stellenangebote
Social Media
Facebook
Twitter
YouTube
Instagram
Seitenanfang y Kontrast N
Impressum | Kontakt