Jump to navigation

Logo RUB
  • Corona-Infos
  • Studium
  • Forschung
  • Transfer
  • News
  • Über uns
  • Einrichtungen
 
MENÜ
  • RUB-STARTSEITE
  • News
  • Wissenschaft
  • Studium
  • Transfer
  • Leute
  • Hochschulpolitik
  • Kultur und Freizeit
  • Vermischtes
  • Servicemeldungen
  • Serien
  • Dossiers
  • Bildergalerien
  • Presseinformationen
    • Abonnieren
  • RUB in den Medien
    • Abonnieren
  • Rubens
  • Rubin
    • Abonnieren
    • Printarchiv
  • Archiv
  • English
  • Redaktion

Newsportal - Ruhr-Universität Bochum

Presseinformation
Jan Trieschmann und Thomas Musch
Dr. Jan Trieschmann, hier mit Dekan Prof. Dr. Thomas Musch, ist für seine Doktorarbeit mit dem Gebrüder-Eickhoff-Preis ausgezeichnet worden.
© RUB, Marquard
Eickhoff-Preis

Was beim Beschichten von Oberflächen mittels Plasmen passiert

Jan Trieschmanns theoretische Berechnungen helfen beim Verständnis von Beschichtungsprozessen. Davon könnte auch die Industrie profitieren.

Wie sich bei der plasmagestützten Beschichtung von Oberflächen die Teilchen in der Gasphase ausbreiten, hat Dr. Jan Trieschmann in seiner Doktorarbeit an der Ruhr-Universität Bochum mit einem Computermodell analysiert. Ein detailliertes Verständnis dieser Prozesse kann helfen, den Abscheideprozess so genau wie möglich auf die jeweilige industrielle Anwendung anzupassen. Für seine Arbeit erhielt Trieschmann am 6. Juli 2018 den mit 3.000 Euro dotierten Gebrüder-Eickhoff-Preis, den er in der Eickhoff-Fabrik entgegennahm.

Viele Anwendungen ohne Plasmaprozesse unmöglich

Reflexionsarme Brillengläser, wärmeisolierende Fensterscheiben oder leistungsstarke Mikroprozessoren in mobilen Geräten sind nur drei Beispiele für Anwendungen, bei denen beschichtete Oberflächen für die Funktion entscheidend sind. „Funktionalisierte Dünnschichten, die mit der Plasmatechnik aufgetragen werden, beeinflussen gezielt Eigenschaften wie Lichtreflexion, elektrische Leitfähigkeit, Härte oder Elastizität“, sagt Jan Trieschmann, der seine Doktorarbeit am Lehrstuhl Theoretische Elektrotechnik anfertigte. „Ohne Plasmaprozesse wären viele moderne Applikationen gar nicht möglich“, ergänzt er.

Insbesondere die physikalische Gasphasenabscheidung wird häufig für das Aufbringen dünner Schichten verwendet. Dabei werden die zu beschichtenden Bauteile zusammen mit sogenannten Targets – häufig aus Metall – in eine Prozesskammer eingebracht. Bei starkem Unterdruck wird ein Plasma erzeugt, welches beim Kontakt mit der Targetoberfläche einzelne Atome aus dieser herausschlägt, sodass sie in die Gasphase gelangen. Das zerstäubte Metall bildet eine sehr dünne Schicht auf dem Werkstück.

Den Transport von Teilchen modellieren

Ziel von Trieschmanns Arbeit war es, den Transport der Teilchen durch die Gasphase mit theoretischen Berechnungen zu verstehen. Er entwickelte ein Computermodell, das vorhersagt, wie sich die Teilchen der beteiligten Atomsorten, beispielsweise Argon, Stickstoff, Aluminium, Titan oder Chrom, in der Prozesskammer ausbreiten.

Aufgrund des niedrigen Gasdrucks können die Prozesse nur mit besonders rechenintensiven Methoden zuverlässig theoretisch beschrieben werden. Trieschmann verwendete sogenannte Monte-Carlo-Methoden, mit denen er einzelne Teilchen verfolgte, deren Laufbahnen durch Stöße gestört werden. „Diese Stöße muss man sich ähnlich wie bei Billardkugeln vorstellen, die aufeinanderprallen. Sie werden durch Zufallszahlen festgelegt, deshalb der Name Monte Carlo“, erklärt er.

Vorschläge für die Praxis

Mithilfe der berechneten Vorhersagen ist es möglich, die Abscheideprozesse im Detail zu verstehen. Durch virtuelle Modellvariationen konnte Jan Trieschmann auch die Einflüsse bestimmter Stellgrößen wie Reaktorgeometrie oder zeitlich modulierte Plasmaanregung untersuchen und Vorschläge für Parameter ableiten, die in der Praxis zu optimalen Ergebnissen führen würden.

Die Arbeiten erfolgten im Rahmen des Sonderforschungsbereich/Transregio 87 „Gepulste Hochleistungsplasmen zur Synthese nanostrukturierter Funktionsschichten“, in dem Trieschmann auf Daten aus experimentellen Untersuchungen von Kolleginnen und Kollegen zurückgreifen konnte. „Das hat es uns ermöglicht, eine Reihe grundlegender physikalischer Transportmechanismen zu verstehen“, resümiert der Forscher. „Im Dialog mit Partnern aus der Industrie tragen diese Ergebnisse unmittelbar zum wissensbasierten Schichtdesign bei. Die Technologie kann so gezielt weiterentwickelt werden, ohne dass die richtigen Parameter durch Erfolg und Irrtum gefunden werden müssen.“

Jan Trieschmann arbeitet inzwischen an der Brandenburgischen Technischen Universität Cottbus.

Eickhoff-Preis

Der Gebrüder-Eickhoff-Preis steht nicht nur für exzellente Forschungsarbeiten, sondern auch für die fruchtbare Verbindung zwischen dem Bochumer Campus und Unternehmen mit lokalen Wurzeln. Die Firma Eickhoff stiftete den Preis 1989 anlässlich ihres 125-jährigen Bestehens und verleiht ihn jährlich für herausragende Dissertationen aus den Bereichen Maschinenbau sowie Elektrotechnik und Informationstechnik.

Pressekontakt

Dr. Jan Trieschmann
Fachgebiet Theoretische Elektrotechnik
Fakultät 1: Mathematik, Informatik, Physik, Elektrotechnik und Informationstechnik
Brandenburgische Technische Universität Cottbus – Senftenberg
Tel.: 0355 69 5158
E-Mail: jan.trieschmann@b-tu.de

Angeklickt
  • Presseinformation zum Eickhoff-Preisträger aus dem Bereich Maschinenbau
Veröffentlicht
Montag
9. Juli 2018
09.08 Uhr
Von
Julia Weiler (jwe)
Share
Teilen
Das könnte Sie auch interessieren
Mirkoplasmajet
Niedertemperaturplasmen

Die maßgeschneiderte Welle

Frederik Schmidt und Dustin Jantos wurden mit dem Eickhoff-Preis ausgezeichnet.
Eickhoff-Preis

Zwei Doktorarbeiten ausgezeichnet

Peter Awakowicz und Marc Böke im Labor
Polymere

Wie Cola nach einem Jahr noch prickelt

Derzeit beliebt
Zwei Personen mit anatomischen Modellen
Medizin

Auf Onlinelehre reagiert der Körper anders

Laborszene
Citizen Science

Das Projekt CS:iDrop eröffnet sein Messlokal

Blick aus einem Flugzeug
Psychologie

Nie wieder „Oh Gott, jetzt stürzen wir ab!“

 
Mehr Wissenschaft
Ressort
 
Zur Startseite
News
  • A-Z
  • N
  • K
Logo RUB
Impressum | Kontakt
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

Datenschutz
Barrierefreiheit
Impressum
Schnellzugriff
Service und Themen
Anreise und Lagepläne
Hilfe im Notfall
Stellenangebote
Social Media
Facebook
Twitter
YouTube
Instagram
Seitenanfang y Kontrast N
Impressum | Kontakt