Wenn spiegelbildliche chemische Moleküle optimal miteinander wechselwirken sollen, kommt es darauf an, dass sich die richtigen Formen begegnen – sonst ist es so, als ob sich eine rechte und eine linke Hand schütteln.
© RUB, Kramer

Chemie Die Wechselwirkungen von chemischen Spiegelbildern

Chemische Moleküle, die sich wie Bild und Spiegelbild verhalten, können sehr unterschiedlich mit anderen Molekülen wechselwirken. Ein neues Projekt soll mehr über ihre Unterschiede verraten.

Wie stark die Wechselwirkungen sind, die spiegelbildliche chemische Moleküle – sogenannte chirale Verbindungen – mit ihren Interaktionspartnern eingehen, wollen Chemiker der Ruhr-Universität Bochum herausfinden. Sie konzentrieren sich dabei auf die Halogenbrücken-Bindungen, die Moleküle mit einem Brom- oder Iod-Atom ausbilden können. Diese Wechselwirkungen werden aktuell in vielen Gebieten der Chemie als Designelement für funktionelle Moleküle untersucht, etwa für moderne Katalysatoren sowie neue Wirkstoffe oder Materialien. Die Arbeit der Forscherinnen und Forscher um Dr. Christian Merten vom Lehrstuhl für Organische Chemie II fördert die Boehringer-Ingelheim-Stiftung mit rund 760.000 Euro im Rahmen des Perspektivenprogramms „Plus 3“ für drei Jahre. Das Projekt startet im November 2018.

Chemische Spiegelbilder können sehr unterschiedlich wirken

Viele Moleküle, etwa Aminosäuren oder Zucker, existieren in zwei räumlichen Anordnungen, wobei in der Regel nur eine davon in der Natur vorkommt. „Biologisch kann die Wirkung chiraler Moleküle sehr unterschiedlich sein“, sagt Christian Merten, Mitglied im Exzellenzcluster Ruhr Explores Solvation, kurz Resolv. „Das liegt vor allem daran, dass die spiegelbildlichen Formen mit Biomolekülen wie Enzymen auf verschiedene Weisen wechselwirken.“

Chemiker verfolgen daher das Ziel, eine der spiegelbildlichen Formen gezielt herstellen und ihre Wechselwirkungen mit anderen Molekülen genau verstehen und vorhersagen zu können. Das Projekt „Stereochemical communication as probe for halogen bonding interactions“ der Bochumer Forscher widmet sich vor allem dem zweiten Aspekt, der Stärke der Wechselwirkung.

Halogenbrücken schwer zu untersuchen

Eine Halogenbrücke bildet sich zwischen dem positiv polarisierten Ende einer Kohlenstoff-Brom- oder Kohlenstoff-Iod-Bindung eines Moleküls und einem Interaktionspartner. Die Energie dieser schwachen Wechselwirkung ist besonders schwer zu quantifizieren. „Die Wechselwirkungsenergien von Modellsubstanzen, die wir mit modernen theoretischen Methoden gut beschreiben können, können wir experimentell nur schwer bestimmen, da die Substanzen oft gasförmig sind“, erklärt Christian Merten. „Aber die Modellsubstanzen, die wir experimentell gut handhaben können, sind für heutige Computermodelle meist viel zu groß und komplex.“ Hinzu kommt, dass Halogenbrücken-Wechselwirkungen in Lösung oft in Konkurrenz mit anderen intermolekularen Wechselwirkungen stehen, etwa mit denen mit dem Lösungsmittel.

Mit einem neuen experimentellen Aufbau will das Team dieses Problem umgehen. Die Forscher ersetzen das Lösungsmittel durch Edelgase, die unter Druck und bei niedrigen Temperaturen verflüssigt werden. Sie sind reaktionsträge und können keine störenden Wechselwirkungen ausbilden.

Vorhersagen als Ziel

Die Chemiker wollen für eine Reihe von Modellsystemen herausfinden, ob die Halogenbrücken zwischen chiralen Molekülen unterschiedliche Energien aufweisen. Sie betrachten dabei vor allem, was passiert, wenn zwei verschiedene chirale Substanzen miteinander wechselwirken. Dabei ist es entscheidend, welche Spiegelbilder aufeinandertreffen. „Das muss man sich wie zwei Hände vorstellen, die sich schütteln“, veranschaulicht Christian Merten. „Bei zwei rechten oder zwei linken Händen klappt der Handschlag optimal, bei einer rechten und einer linken Hand nicht.“ Die beiden Arten der Wechselwirkung unterscheiden sich in der Energie, die darin steckt, je nachdem wie gut die Moleküle zusammenpassen. Wie groß der Unterschied ist, wollen die Wissenschaftler messen.

„Unser Ziel ist es, eines Tages vorhersagen zu können, welche Strukturelemente man braucht, um diesen Prozess der chiralen Erkennung möglichst effizient zu gestalten“, so Merten.

Über die Förderung

Die Boehringer-Ingelheim-Stiftung ist eine rechtlich selbstständige, gemeinnützige Stiftung und fördert die medizinische, biologische, chemische und pharmazeutische Wissenschaft. Mit ihrem Perspektivenprogramm „Plus 3“ und den „Exploration Grants“ fördert sie bundesweit exzellente unabhängige Nachwuchsforschergruppen.

Pressekontakt

Dr. Christian Merten
Organische Chemie II
Fakultät für Chemie und Biochemie
Ruhr-Universität Bochum
Tel.: 0234 32 24529
E-Mail: christian.merten@rub.de

Download hochauflösender Bilder
Der Download der gewählten Bilder erfolgt als ZIP-Datei. Bildzeilen und Bildnachweise finden Sie nach dem Entpacken in der enthaltenen HTML-Datei.
Nutzungsbedingungen
Die Verwendung der Bilder ist unter Angabe des entsprechenden Copyrights für die Presse honorarfrei. Die Bilder dürfen ausschließlich für eine Berichterstattung mit Bezug zur Ruhr-Universität Bochum verwendet werden, die sich ausschließlich auf die Inhalte des Artikels bezieht, der den Link zum Bilderdownload enthält. Mit dem Download erhalten Sie ein einfaches Nutzungsrecht zur einmaligen Berichterstattung. Eine weitergehende Bearbeitung, die über das Anpassen an das jeweilige Layout hinausgeht, oder eine Speicherung der Bilder für weitere Zwecke, erfordert eine Erweiterung des Nutzungsrechts. Sollten Sie die Fotos daher auf andere Weise verwenden wollen, kontaktieren Sie bitte redaktion@ruhr-uni-bochum.de

Veröffentlicht

Donnerstag
11. Oktober 2018
08:54 Uhr

Von

Julia Weiler

Teilen