Enrica Bordignon (vorn) und Svetlana Kucher mit einem Modell des Transportproteins, das sie untersucht haben © RUB, Marquard

Medikamentenresistenz Transportproteine vom Transport abhalten

Bestimmte Membranproteine sind darauf spezialisiert, Moleküle aus Zellen zu transportieren – ein Problem für die Wirksamkeit von Krebsmedikamenten und Antibiotika.

Mit einem künstlich hergestellten Antikörperfragment hat ein internationales Forschungsteam den Transportmechanismus eines Membranproteins aus Bakterien untersucht. Die Transportproteine, ABC-Exporter genannt, kommen beispielsweise in den Zellmembranen von Bakterien und in großen Mengen in Krebszellen vor und sind dafür verantwortlich, kleine Moleküle aus den Zellen zu befördern. Einige Transporter können Antibiotika oder Chemotherapie-Wirkstoffe aus den Zellen pumpen und die Therapien somit wirkungslos machen. In der aktuellen Studie arbeiteten die Forscherinnen und Forscher mit isolierten ABC-Exportern. Sie zeigten, wie die Transportfunktion mit dem Energieantrieb des Proteins zusammenhängt und wie sich beides blockieren lässt. Die Ergebnisse sind in der Zeitschrift Nature Communications vom 21. Mai 2019 veröffentlicht.

Für die Studie kooperierten Prof. Dr. Enrica Bordignon und Prof. Dr. Lars Schäfer von der Ruhr-Universität Bochum, beide Mitglied im Exzellenzcluster Ruhr Explores Solvation, mit Prof. Dr. Markus Seeger von der Universität Zürich und Prof. Dr. Mikko Karttunen von der University of Western Ontario.

Mehrstufiger Transportprozess

Beim Transport von Molekülen aus den Zellen verbrauchen ABC-Exporter Energie. Diese beziehen sie aus der Spaltung des Energiespeichermoleküls ATP auf der Innenseite der Membran. Der ABC-Exporter besteht grob gesagt aus drei Bereichen: dem energieliefernden Motor im Inneren der Zelle; einem Verbindungsstück, das sich durch die Zellmembran erstreckt; und einer Pforte auf der Außenseite der Membran.

Für den Transportvorgang öffnet sich der ABC-Exporter im Inneren der Zelle, nimmt ein Molekül aus der Zellflüssigkeit auf und transportiert es bis zur anderen Seite der Membran. Dort öffnet sich die äußere Pforte, und das Molekül wird ausgeschieden – aber nur, wenn der Proteinmotor im Inneren ATP spaltet. Erst wenn die äußere Pforte wieder geschlossen ist, kann der nächste Transportvorgang beginnen.

Motor ausgeschaltet

Die Wissenschaftlerinnen und Wissenschaftler entwickelten ein künstliches Antikörperfragment, auch Sybody genannt, das im Reagenzglas an den isolierten ABC-Exporter andockte. Mittels Röntgenkristallographie und Elektronenspinresonanz zeigte das Team, dass der Sybody an die geöffnete äußere Pforte bindet. Dadurch konnte sich die Pforte nicht mehr schließen und somit kein neuer Transportvorgang eingeleitet werden. Als Folge davon blieb der Motor im Inneren abgeschaltet; es wurde kein ATP mehr gespalten.

Die Ergebnisse bestätigte die Gruppe in weiteren Experimenten ohne Sybody. In diesen tauschten sie gezielt einige Aminosäuren des Proteins durch genetische Mutation aus; auch das blockierte den Schließmechanismus der äußeren Pforte und die ATP-Spaltung.

„Unsere Analysen haben gezeigt, dass der Mechanismus zum Öffnen und Schließen der äußeren Pforte strukturell mit der Spaltung des Energielieferanten ATP auf der Innenseite zusammenhängt“, beschreibt Enrica Bordignon. „Bei unseren Ergebnissen handelt es sich um Grundlagenforschung“, so die Leiterin der Bochumer Arbeitsgruppe EPR-Spektroskopie weiter. „Wir hoffen, damit neue Ansätze zur Bekämpfung der Medikamentenresistenz zu eröffnen.“

Förderung

Die Arbeiten wurden finanziell unterstützt von der Deutschen Forschungsgemeinschaft im Rahmen des Exzellenzclusters Ruhr Explores Solvation (Resolv, EXC2033), eines Emmy-Noether-Grants (SCHA 1574/3-1) sowie der Projekte BO 3000/ 1–2 und INST 130/972-1 FUGG. Weitere Förderung kam von der Swiss National Science Foundation (PP00P3_144823) sowie dem Natural Sciences and Engineering Research Council of Canada und dem Canada Research Chairs Program.

Originalveröffentlichung

Cedric A. J. Hutter et al.: The extracellular gate shapes the energy profile of an ABC exporter, in: Nature Communications, 2019, DOI: 10.1038/s41467-019-09892-6

Pressekontakt

Prof. Dr. Markus Seeger
Institut für Medizinische Mikrobiologie
Universität Zürich
Schweiz
Tel.: +41 44 634 53 96
E-Mail: m.seeger@imm.uzh.ch

Prof. Dr. Enrica Bordignon
Arbeitsgruppe EPR-Spektroskopie
Fakultät für Chemie und Biochemie
Ruhr-Universität Bochum
Tel.: 0234 32 26239
E-Mail: enrica.bordignon@rub.de

Prof. Dr. Lars Schäfer
Arbeitsgruppe Molekulare Simulation
Fakultät für Chemie und Biochemie
Ruhr-Universität Bochum
Tel.: 0234 32 21582
E-Mail: lars.schaefer@rub.de

Download hochauflösender Bilder
Der Download der gewählten Bilder erfolgt als ZIP-Datei. Bildzeilen und Bildnachweise finden Sie nach dem Entpacken in der enthaltenen HTML-Datei.
Nutzungsbedingungen
Die Verwendung der Bilder ist unter Angabe des entsprechenden Copyrights für die Presse honorarfrei. Die Bilder dürfen ausschließlich für eine Berichterstattung mit Bezug zur Ruhr-Universität Bochum verwendet werden, die sich ausschließlich auf die Inhalte des Artikels bezieht, der den Link zum Bilderdownload enthält. Mit dem Download erhalten Sie ein einfaches Nutzungsrecht zur einmaligen Berichterstattung. Eine weitergehende Bearbeitung, die über das Anpassen an das jeweilige Layout hinausgeht, oder eine Speicherung der Bilder für weitere Zwecke, erfordert eine Erweiterung des Nutzungsrechts. Sollten Sie die Fotos daher auf andere Weise verwenden wollen, kontaktieren Sie bitte redaktion@ruhr-uni-bochum.de

Veröffentlicht

Montag
17. Juni 2019
08:15 Uhr

Von

Julia Weiler

Teilen