Optogenetik Lichtaktivierbare Proteine gezielt herstellen

Bislang verläuft die Entwicklung hauptsächlich nach dem Prinzip „Versuch und Irrtum“. Eine neue Methode könnte künftig viel Zeit sparen.

Eine neue Strategie für das Design lichtsensitiver Proteine haben Forscherinnen und Forscher der Ruhr-Universität Bochum (RUB) entwickelt. Solche Proteine, auch optogenetische Werkzeuge genannt, können durch Lichtimpulse an- und ausgeschaltet werden, wodurch sie gezielt zelluläre Prozesse auslösen. Mit ihrer Hilfe lässt sich beispielsweise in lebenden Organismen untersuchen und steuern, wie Nervenzellen Signale weiterleiten. Bislang mussten Forscher bei der Entwicklung optogenetischer Werkzeuge viel nach dem Versuch-und-Irrtum-Prozess vorgehen. Eine Kombination aus computergestützten und experimentellen Verfahren ermöglicht nun eine gezieltere Herangehensweise.

Das Team um Prof. Dr. Stefan Herlitze, Lehrstuhl für Allgemeine Zoologie und Neurobiologie der RUB, und Prof. Dr. Klaus Gerwert, Lehrstuhl für Biophysik der RUB, berichtet zusammen mit einem Kollegen aus Münster über das Verfahren in der Zeitschrift „Chembiochem“, die dem Thema das Cover der Ausgabe vom 15. Juli 2019 widmete.

Proteine mit Licht an- und ausschalten

Ein Beispiel für ein optogenetisches Werkzeug ist das Protein Melanopsin. Es lässt sich durch zwei unterschiedlich farbige Lichtsignale an- und ausschalten. „Häufig wird mehr als nur ein optogenetisches Werkzeug benötigt, etwa wenn zwei verschiedene Prozesse in einer Zelle unabhängig voneinander gesteuert werden sollen“, erklärt Raziye Karapinar vom Lehrstuhl für Allgemeine Zoologie und Neurobiologie. „Daher müssen wir gewährleisten, dass sich die Farbsignale für die zwei Werkzeuge nicht überlagern“, ergänzt der Bochumer Biophysiker Dr. Till Rudack.

Das Forscherteam um Klaus Gerwert und Stefan Herlitze hat eine Hybridstrategie zum gezielten Protein-Engineering von Melanopsin und anderen optogenetischen Werkzeugen entwickelt. Die Wissenschaftlerinnen und Wissenschaftler kombinierten computergestützte Berechnungsverfahren mit elektrophysiologischen Messungen.

Computersimulation bestimmt aktivierende Lichtfarbe

Mit quantenchemischen Computersimulationen berechneten sie die spezifische Lichtfarbe, die für die Aktivierung eines Proteins notwendig ist. So konnten sie auch bestimmen, wie einzelne Proteinbausteine oder der Austausch einzelner Proteinbausteine die Lichtfarbe beeinflussen. Die Computersimulation erzeugte eine Liste von Proteinvarianten, die als optogenetische Werkzeuge infrage kommen. Die vielversprechenden Kandidaten überprüften die Forscher anschließend mit elektrophysiologischen Messungen auf ihr optogenetisches Potenzial. Dies beinhaltet die
Lichtsensitivität, also wie viel Licht benötigt wird, um das Protein an- oder auszuschalten, sowie die Geschwindigkeit und Selektivität, mit der Mechanismen nach Betätigen des Schalters ausgeführt oder beendet werden. Ein gutes optogenetisches Werkzeug kann mit geringer Lichtintensität möglichst schnell geschaltet werden.

Validierung mit gut untersuchtem optogenetischen Werkzeug

Anhand des gut untersuchten optogenetischen Werkzeugs Channelrhodpsin-2 validierte das Team die neue Hybridstrategie. Für das Protein hatten die Wissenschaftler mit dem Computer simuliert, wie sich der Austausch von Proteinbausteinen auf die aktivierende Lichtfarbe auswirken würde. Die Vorhersagen deckten sich mit den experimentell gemessenen Werten. „Diese Übereinstimmung zeigt, wie zuverlässig unsere Strategie ist, und erlaubt die Anwendung auch für Proteine, über die nur wenig bekannt ist, wie Melanopsin “, so Biophysiker Dr. Stefan Tennigkeit. 

Neue Melanopsin-Varianten

Mit der entwickelten Strategie tauschte die Gruppe gezielt Proteinbausteine in Melanopsin aus und manipulierte so die Lichtfarbe zur Aktivierung des Moleküls, ohne die Proteinfunktion zu beeinträchtigen. Die Lichtfarbe, bei der die normale Version des Melanopsins aktiviert wird, überlappt mit der von vielen anderen optogenetischen Werkzeugen, sodass diese nicht kombiniert werden können. „Ich bin überzeugt, dass diese neue Melanopsin-Variante zukünftig mit anderen optogenetischen Werkzeugen kombiniert werden kann, um komplexe zelluläre Prozesse zu steuern“, sagt Stefan Herlitze.

„Gegenüber klassischen Verfahren des Protein-Engineerings wie Versuch-und-Irrtum besteht der Clou unserer Methode darin, dass wir durch automatische computergestützte Vorhersagen, die sich parallel auf mehreren Computerclustern zeitgleich berechnen lassen, eine enorme Zeitersparnis erzielen“, fasst Klaus Gerwert zusammen.

Förderung

Die Deutsche Forschungsgemeinschaft unterstützte die Arbeiten finanziell im Rahmen der Projekte mit den Fördernummern He2471/23-1, He2471/21-1, He2471/19-1, GE 599/19-1 und GE 599/20-1, im Schwerpunktprogramm SPP1926 sowie im Rahmen der Sonderforschungsbereiche 874 (Projektnummer 122679504) und 1280 (Projektnummer 316803389).  Weitere Förderung kam vom Land NRW im Rahmen des Proteinforschungskonsortiums Pure, von der Deutschen Studienstiftung und der Friedrich-Ebert-Stiftung.

Originalveröffentlichung

Stefan Alexander Tennigkeit, Raziye Karapinar, Till Rudack et al.: Design of an ultrafast G protein switch based on a mouse melanopsin variant, in: ChemBioChem, 2019, DOI: 10.1002/cbic.201900110

Pressekontakt

Prof. Dr. Stefan Herlitze
Lehrstuhl für Zoologie und Neurobiologie
Fakultät für Biologie und Biotechnologie
Ruhr-Universität Bochum
Tel.: 0234 32 24363
E-Mail: stefan.herlitze@rub.de

Prof. Dr. Klaus Gerwert
Zentrum für Proteindiagnostik (Prodi)
und Lehrstuhl Biophysik
Fakultät für Biologie und Biotechnologie
Ruhr-Universität Bochum
Tel.: 0234 32 24461, 0234 32 18035
E-Mail: gerwert@bph.rub.de

Download hochauflösender Bilder
Der Download der gewählten Bilder erfolgt als ZIP-Datei. Bildzeilen und Bildnachweise finden Sie nach dem Entpacken in der enthaltenen HTML-Datei.
Nutzungsbedingungen
Die Verwendung der Bilder ist unter Angabe des entsprechenden Copyrights für die Presse honorarfrei. Die Bilder dürfen ausschließlich für eine Berichterstattung mit Bezug zur Ruhr-Universität Bochum verwendet werden, die sich ausschließlich auf die Inhalte des Artikels bezieht, der den Link zum Bilderdownload enthält. Mit dem Download erhalten Sie ein einfaches Nutzungsrecht zur einmaligen Berichterstattung. Eine weitergehende Bearbeitung, die über das Anpassen an das jeweilige Layout hinausgeht, oder eine Speicherung der Bilder für weitere Zwecke, erfordert eine Erweiterung des Nutzungsrechts. Sollten Sie die Fotos daher auf andere Weise verwenden wollen, kontaktieren Sie bitte redaktion@ruhr-uni-bochum.de

Veröffentlicht

Freitag
02. August 2019
13:53 Uhr

Von

Julia Weiler

Teilen