Jump to navigation

Logo RUB
  • Energiesparen
  • Studium
  • Forschung
  • Transfer
  • News
  • Über uns
  • Einrichtungen
 
MENÜ
  • RUB-STARTSEITE
  • News
  • Wissenschaft
  • Studium
  • Transfer
  • Leute
  • Hochschulpolitik
  • Kultur und Freizeit
  • Vermischtes
  • Servicemeldungen
  • Serien
  • Dossiers
  • Bildergalerien
  • Presseinformationen
    • Abonnieren
  • RUB in den Medien
    • Abonnieren
  • Rubens
  • Rubin
    • Abonnieren
    • Printarchiv
  • Archiv
  • English
  • Redaktion

Newsportal - Ruhr-Universität Bochum

Presseinformation
  • Abgase aus der Industrie sinnvoll nutzen ist das Ziel des Projekts Carbon-2-Chem.
    © RUB, Marquard
  • Holger Ruland, Daniel Laudenschleger und Martin Muhler (von links) kooperierten für die Studie.
    © RUB, Marquard
  /  
Methanolsynthese

Einblicke in die Struktur eines rätselhaften Katalysators

Der Katalysator für die Produktion von Methanol hatte sich in der Vergangenheit allen Versuchen, seine Struktur aufzuklären, entzogen. Jetzt wissen Forscher mehr über sein aktives Zentrum.

Methanol ist eine der wichtigsten Basischemikalien, etwa um Kunststoffe oder Baumaterialien herzustellen. Um den Produktionsprozess noch effizienter gestalten zu können, wäre es hilfreich, mehr über den Kupfer-Zinkoxid-Aluminiumoxid-Katalysator zu wissen, der bei der Methanolherstellung im Einsatz ist. Bislang war es jedoch nicht möglich, seine Oberfläche unter Reaktionsbedingungen mit strukturaufklärenden Methoden zu untersuchen. Einem Team der Ruhr-Universität Bochum (RUB) und des Max-Planck-Instituts für Chemische Energiekonversion (MPI CEC) ist es dennoch gelungen, Einblicke in den Aufbau seines aktiven Zentrums zu gewinnen. Diese beschreiben die Wissenschaftler in der Zeitschrift Nature Communications vom 4. August 2020.

Das Team zeigte erstmals, dass die Zink-Komponente des aktiven Zentrums positiv geladen ist und dass der Katalysator sogar zwei kupferbasierte aktive Zentren besitzt. „Über den Zustand der Zink-Komponente am aktiven Zentrum wurde seit Einführung des Katalysators in den 1960er-Jahren kontrovers diskutiert. Aus unseren Erkenntnissen können wir nun zahlreiche Ideen ableiten, wie wir den Katalysator in Zukunft optimieren können“, resümiert Prof. Dr. Martin Muhler, Leiter des Lehrstuhls für Technische Chemie an der RUB und Max Planck Fellow am MPI CEC. Er kooperierte für die Arbeiten mit dem Bochumer Forscher Dr. Daniel Laudenschleger und dem Mülheimer Forscher Dr. Holger Ruland.

Methanol nachhaltig herstellen

Die Arbeiten waren eingebettet in das Projekt Carbon-2-Chem, das zum Ziel hat, Hüttengase, die bei der Stahlproduktion anfallen, für die Herstellung von Chemikalien zu nutzen und so den CO2-Ausstoß zu verringern. Auch für eine nachhaltige Methanolsynthese könnten Hüttengase als Ausgangsstoff dienen, zusammen mit elektrolytisch hergestelltem Wasserstoff. Im Rahmen von Carbon-2-Chem untersuchte das Forschungsteam zuletzt, wie sich Verunreinigungen in Hüttengasen, die zum Beispiel in der Kokerei oder dem Hochofen entstehen, auf den Katalysator auswirken. Diese Arbeiten ermöglichten letztendlich auch die Erkenntnisse über den Aufbau des aktiven Zentrums.

Aktives Zentrum für Analyse deaktiviert

Die Forscher hatten stickstoffhaltige Substanzen – Ammoniak und Amine – als Verunreinigungen identifiziert, die als Katalysatorgift wirken. Sie deaktivieren den Katalysator, allerdings nicht dauerhaft: Verschwinden die Verunreinigungen, erholt sich der Katalysator von selbst. Mithilfe einer einzigartigen selbst gebauten Forschungsapparatur – einer Flussapparatur mit integrierter Hochdruck-Pulseinheit – leiteten die Forscher Ammoniak und Amine über die Katalysatoroberfläche, wodurch sie das aktive Zentrum mit Zink-Komponente zeitweilig deaktivierten. Trotz dieser Deaktivierung der Zink-Komponente konnte weiterhin eine andere Reaktion am Katalysator stattfinden: nämlich die Umsetzung von Ethen zu Ethan. Auf diese Weise wiesen die Forscher ein parallel arbeitendes zweites aktives Zentrum nach, das metallisches Kupfer beinhaltet, aber keine Zink-Komponente besitzt.

Da Ammoniak und die Amine an positiv geladene Metallionen auf der Oberfläche gebunden werden, war damit klar, dass Zink als Teil des aktiven Zentrums eine positive Ladung trägt.

Förderung

Das Bundesministerium für Bildung und Forschung förderte die Arbeiten im Rahmen des Projekts Carbon-2-Chem (Förderkennzeichen 03EK3039E).

Originalveröffentlichung

Daniel Laudenschleger, Holger Ruland, Martin Muhler: Identifying the nature of the active sites in methanol synthesis over Cu/ZnO/Al2O3 catalysts, in: Nature Communications, 2020, DOI: 10.1038/s41467-020-17631-5

Pressekontakt

Prof. Dr. Martin Muhler
Lehrstuhl für Technische Chemie
Fakultät für Chemie und Biochemie
Ruhr-Universität Bochum
Tel.: +49 234 32 26745
E-Mail: muhler@techem.rub.de

Download hochauflösender Bilder
Der Download der gewählten Bilder erfolgt als ZIP-Datei.
Bildzeilen und Bildnachweise finden Sie nach dem Entpacken in der enthaltenen HTML-Datei.
Nutzungsbedingungen
Die Verwendung der Bilder ist unter Angabe des entsprechenden Copyrights für die Presse honorarfrei. Die Bilder dürfen ausschließlich für eine Berichterstattung mit Bezug zur Ruhr-Universität Bochum verwendet werden, die sich auf die Inhalte des Artikels bezieht, der den Link zum Bilderdownload enthält.
Ich akzeptiere die Nutzungsbedingungen.
Veröffentlicht
Dienstag
4. August 2020
11.05 Uhr
Von
Julia Weiler (jwe)
Share
Teilen
Das könnte Sie auch interessieren
Porträt Martina Havenith-Newen
Zehn Jahre RESOLV

Als Außenseiter an die Weltspitze

Ein weißes Pulver wird mit einem Spatel aus einem Fläschchen genommen.
Science-Publikation

Neues Syntheseverfahren für die nachhaltige Nutzung kleiner Moleküle

Kristina Tschulik und Hatem Amin
Energie

Würfel stechen Kugeln als Katalysatorpartikel aus

Derzeit beliebt
Eine Frau zeigt ihre Handinnenfläche, auf der „Nein“ steht.
Richtlinie verabschiedet

Diskriminierung nicht hinnehmen

Ein junger Mann mit schwarzem Kapuzenpulli sitzt in einer Hörsaalreihe und lächelt.
Politik und Studium

Dienstag Bachelorarbeit abgeben, Sonntag Bundestagsmandat gewinnen

Eine linke Hand im blauen Handschuh hält ein Reagenzglas mit einer durchsichtigen, roten Flüssigkeit. Die rechte Hand, ebenfalls mit blauem Handschuh, hält eine Pipette und füllt die rote Flüssigkeit in drei in einem Ständer stehende Gefäße.
Typ-2-Diabetes

Ukrainische Forscherinnen trotzen dem Krieg

 
Mehr Wissenschaft
Ressort
 
Zur Startseite
News
  • A-Z
  • N
  • K
Logo RUB
Impressum | Kontakt
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

Datenschutz
Barrierefreiheit
Impressum
Schnellzugriff
Service und Themen
Anreise und Lagepläne
Hilfe im Notfall
Stellenangebote
Social Media
Facebook
Twitter
YouTube
Instagram
Seitenanfang y Kontrast N
Impressum | Kontakt