Martina Havenith-Newen hat neue Einblicke gewonnen, indem sie zwei Methoden miteinander kombiniert hat. © RUB, Marquard

Chemie Wie sich proteinreiche Tröpfchen bilden

Mit Terahertz-Spektroskopie lässt sich die spontane Bildung proteinreicher Tröpfchen erklären, die möglicherweise zu neurodegenerativen Erkrankungen führen.

Mithilfe einer neuen Methode, der Terahertz-Kalometrie, ist es einem Forschungsteam des Bochumer Exzellenzclusters Ruhr Explores Solvation RESOLV gelungen, die spontane Phasentrennung in eine proteinreiche und eine proteinarme Phase in einer Lösung neu zu beleuchten. Man vermutet, dass die proteinreichen Tröpfchen die Bildung von neurotoxischen Proteinaggregaten begünstigen – ein Ausgangspunkt für neurodegenerative Krankheiten. Die Forschenden um Prof. Dr. Martina Havenith, Inhaberin des Lehrstuhls für Physikalische Chemie II der Ruhr-Universität Bochum, berichten im Journal of Physical Chemistry Letters vom 6. Februar 2023.

Molekulares Niveau und Zeitauflösung im Pikosekundenbereich

Die Studie fußt auf den Arbeiten im Projekt Terahertz-Kalorimetrie, das vom Europäischen Forschungsrat mit einem Advanced Grant gefördert wurde. „Die visionäre Idee in dem Projekt war es, zwei mächtige Techniken der Physikalischen Chemie – die Laserspektroskopie und die Kalorimetrie – miteinander zu verheiraten“, erklärt Grantee Martina Havenith.

Die Kalorimetrie misst die für chemische und biochemische Reaktionen grundlegenden Größen wie die Wärmekapazität, die Enthalpie und die Entropie. Aus der Kenntnis dieser stoffspezifischen Größen kann vorhergesagt werden, ob zum Beispiel eine Reaktion ohne Zufuhr von Energie spontan stattfinden wird, oder ob Gleichgewichtsbedingungen herrschen. Kalorimetrische Messungen finden in einem makroskopischen Behältnis statt. Dabei werden die Wärmemengen vermessen, die für chemische oder biochemische Reaktionen erforderlich sind. „Die Begrenzung dieser Methode liegt in ihrer limitierten Zeitauflösung und der erforderlichen Probenmenge“, so Martina Havenith.

In ihrem ERC-Projekt ging es darum, diese Limitierungen zu umgehen. Dazu bedurfte es eines neuen Ansatzes, um kalorimetrische Größen für kleinste Proben mit einer Zeitauflösung von Pikosekunden, das heißt einem Millionstel von einer Millionstel Sekunde, auf molekularem Niveau messen zu können. „Zeit- und Ortsauflösungen in diesem Bereich können wir allerdings prinzipiell nicht mit dem traditionellen Konzept der Wärmemessungen erreichen“, erklärt die Forscherin. „Hierzu bedurfte es eines revolutionär anderen Ansatzes, der intrinsisch einen anderen Zugang bietet.“

Wasser spielt eine entscheidende Rolle

Ihre Arbeitsgruppe konnte zeigen, dass durch Messungen der Absorption im sogenannten Terahertz-Bereich spektroskopische Fingerabdrücke gemessen werden können, die linear mit kalorimetrischen Größen korreliert sind. Damit können die Forschenden diese fundamentalen kalorimetrischen Grundgrößen mittels spektroskopischer und ultraschneller laserspektroskopischer Methoden auch bei komplexen Systemen während eines Prozesses oder einer Reaktion in Echtzeit verfolgen.

In der aktuellen Arbeit wenden sie diese Methode – inspiriert durch die Zusammenarbeit mit den Arbeitsgruppen von Prof. Dr. Konstanze Winklhofer und Prof. Dr. Jörg Tatzelt an der Ruhr-Universität erstmals auf ein hochaktuelles Thema der biomedizinischen Forschung an: Sie untersuchten die liquid-liquid phase separation, die spontane Phasentrennung in eine proteinreiche und eine proteinarme flüssige Phase.

„Mittels der Terahertz-Kalorimetrie kann man die Entstehung dieser proteinangereicherten Tröpfchen auf molekularer Ebene neu aufrollen. Nicht nur die Proteine selbst, sondern vor allen Dingen das Wasser spielt dabei eine entscheidende Rolle“, berichtet Martina Havenith. „Die Änderungen im Wasser können wir jetzt live mit der Terahertz-Kamera im Entstehungsprozess verfolgen und dabei basierend auf den abgeleiteten kalorimetrischen Größen genaue Vorhersagen über die Bildung und ihre Abhängigkeit von äußeren Parametern wie der Temperatur treffen.“

Förderung

Die Arbeiten wurden unterstützt durch den European Research Council Advanced Grant 695437 THz-Calorimetry, die Deutsche Forschungsgemeinschaft im Rahmen des Exzellenzclusters RESOLV EXC2033-390677874, das Mercator Research Center, die Europäische Union (FP-RESOMUS - MSCA 801459) sowie das Bundesministerium für Bildung und Forschung und das Ministerium für Kultur und Wissenschaft des Landes Nordrhein-Westfalen.

Originalveröffentlichungen

Simone Pezzotti, Benedikt König, Sashary Ramos, Gerhard Schwaab, Martina Havenith: Liquid-liquid phase separation? Ask the water!, in: JPC Letter, 2023, DOI: 10.1021/acs.jpclett.2c02697

Simone Pezzotti, Federico Sebastiani, Eliane P. van Dam, Sashary Ramos, Valeria Conti Nibali, Gerhard Schwaab, Martina Havenith: Spectroscopic fingerprints of cavity formation and solute insertion as a measure of hydration entropic loss and enthalpic gain, in: Angewandte Chemie International Edition, 2022, DOI: 10.1002/anie.202203893

Pressekontakt

Prof. Dr. Martina Havenith
Physikalische Chemie II
Fakultät für Chemie und Biochemie
Ruhr-Universität Bochum
Tel.: +49 234 32 28249
E-Mail: pc2office@rub.de

Download hochauflösender Bilder
Der Download der gewählten Bilder erfolgt als ZIP-Datei. Bildzeilen und Bildnachweise finden Sie nach dem Entpacken in der enthaltenen HTML-Datei.
Nutzungsbedingungen
Die Verwendung der Bilder ist unter Angabe des entsprechenden Copyrights für die Presse honorarfrei. Die Bilder dürfen ausschließlich für eine Berichterstattung mit Bezug zur Ruhr-Universität Bochum verwendet werden, die sich ausschließlich auf die Inhalte des Artikels bezieht, der den Link zum Bilderdownload enthält. Mit dem Download erhalten Sie ein einfaches Nutzungsrecht zur einmaligen Berichterstattung. Eine weitergehende Bearbeitung, die über das Anpassen an das jeweilige Layout hinausgeht, oder eine Speicherung der Bilder für weitere Zwecke, erfordert eine Erweiterung des Nutzungsrechts. Sollten Sie die Fotos daher auf andere Weise verwenden wollen, kontaktieren Sie bitte redaktion@ruhr-uni-bochum.de

Veröffentlicht

Freitag
10. Februar 2023
09:21 Uhr

Teilen