Hyperspektrale Bildgebung Neue Echtzeit-Methode für die Umweltüberwachung
Mikroplastik detektieren oder Pflanzenschädlinge frühzeitig erkennen – das und noch viel mehr ermöglicht ein neues Verfahren, welches auf Nahinfrarot-Licht-Messungen basiert. Es ist günstig und funktioniert in Echtzeit.
Forschende aus Bochum, Duisburg, Karlsruhe und Münster haben eine neue Methode für die Umweltüberwachung entwickelt. Sie funktioniert mithilfe von Nahinfrarot (NIR)-Licht und ermöglicht, detaillierte spektrale Informationen aus verschiedenen Materialien und biologischen Proben präzise zu erfassen. Das Team um Jan Stegemann und Prof. Dr. Sebastian Kruss vom Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS und von der Ruhr-Universität Bochum zeigte, dass sich mit der sogenannten HyperNIR-Technik beispielsweise verschiedene Kunststoffsorten berührungsfrei unterscheiden lassen, was nützlich für Recyclingprozesse oder die Detektion von Mikroplastik ist. Die Forschenden beschreiben die Entwicklung in der Zeitschrift „Advanced Science“, online veröffentlicht am 4. März 2025.
Das für Menschen nicht sichtbare Nahinfrarot-Licht enthält wertvolle Informationen über die chemische Zusammensetzung einer Probe. Mit früheren Verfahren ließ es sich entweder als Graustufenbild oder als Spektrum darstellen, also als Intensitätsverteilung für verschiedene Wellenlängen. Das neue Verfahren basiert auf der hyperspektralen Bildgebung, also auf der Kombination aus spektralen und räumlichen Informationen. Mit kostengünstigen und kommerziell verfügbaren Komponenten können die Forschenden jede Standardkamera in eine HyperNIR-Kamera verwandeln und so spektrale Informationen in Bilder überführen. Sie nutzen dafür eine steuerbare Polarisationsoptik. Externe Marker, zum Beispiel Farbstoffe, können auch erfasst werden, sind aber nicht erforderlich.
Verfahren funktioniert in Echtzeit
Das System erstellt drei Aufnahmen pro Probe, die detaillierte spektrale Informationen liefern. Während herkömmliche Verfahren eine Probe zeitintensiv abrastern müssen, ist die HyperNIR-Kamera deutlich schneller. „Die Fähigkeit, unterschiedliche Materialien und deren Eigenschaften in Echtzeit zu analysieren, kann die Effizienz von Prozessen in der Umweltüberwachung erheblich steigern“, prognostiziert Sebastian Kruss.
So zeigten die Forschenden beispielsweise, dass sie mit der Hyper-NIR-Technik in Echtzeit verfolgen konnten, wie eine Paprika-Pflanze Wasser aufnimmt – und zwar kontaktlos und ohne Farbstoffe einzusetzen. „Diese hyperspektrale Bildgebung lässt sich potenziell auch auf andere Moleküle übertragen“, gibt Jan Stegemann einen Ausblick. „So könnte man den Nährstoffgehalt in einer Pflanze überwachen oder einen Befall mit Schädlingen sowie pflanzlichen Stress frühzeitig erkennen.“

Mit dem HyperNIR-Verfahren lässt sich zeigen, wie eine Paprikapflanze Wasser aufnimmt. Rechts sind drei Aufnahmen eines einzelnen Blattes zu sehen und die zugehörigen HyperNIR-Bilder, welche die Wasseraufnahme visualisieren; je roter die Färbung, desto mehr Wasser befindet sich an dieser Stelle des Blattes.
Anwendungen auch in der Biomedizin denkbar
Das HyperNIR-Verfahren kann auch mit der Fluoreszenzmikroskopie kombiniert werden, um verschiedene fluoreszierende Moleküle zu unterscheiden, die als Marker genutzt werden. Das macht das System potenziell für die biomedizinische Forschung interessant. Diesen Anwendungsbereich möchte das Team um Jan Stegemann und Sebastian Kruss künftig weiter erschließen.
„Eine Integration des Verfahrens in Drohnen könnte zudem eine neue Dimension der Datenerfassung und -analyse eröffnen und so bei der Lösung drängender Umweltfragen im Bereich Landwirtschaft helfen“, skizziert Sebastian Kruss eine mögliche Weiterentwicklung der Technik.