Jump to navigation

Logo RUB
  • Studium
  • Forschung
  • Transfer
  • News
  • Über uns
  • Einrichtungen
 
MENÜ
  • RUB-STARTSEITE
  • News
  • Wissenschaft
  • Studium
  • Transfer
  • Leute
  • Hochschulpolitik
  • Kultur und Freizeit
  • Vermischtes
  • Servicemeldungen
  • Serien
  • Dossiers
  • Bildergalerien
  • Presseinformationen
    • Abonnieren
  • RUB in den Medien
  • Rubens
  • Rubin
    • Abonnieren
    • Printarchiv
  • Archiv
  • English
  • Redaktion

Newsportal - Ruhr-Universität Bochum

  • Unter dem Lichtmikroskop sind die Ergebnisse des Sputterverfahrens erkennbar.
    © Lars Banko
  • In jeder Ansammlung von Punkten befindet sich eine einzelne Mikrobibliothek – jede einzelne davon enthält eine Zusammensetzungsvariation.
    © Lars Banko
  /  
Materialforschung

Zehntausende mögliche Katalysatoren auf dem Durchmesser eines Haars

Neue Methoden machen es möglich, unzählige neue Materialien in einem Schritt herzustellen und schnell zu untersuchen.

Bei der Suche nach Katalysatoren für die Energiewende sind Materialien aus mindestens fünf Elementen besonders vielversprechend. Nur gibt es davon theoretisch Millionen – wie findet man da das leistungsstärkste? Einem Forschungsteam unter Leitung von Prof. Dr. Alfred Ludwig, Leiter des Lehrstuhls Materials Discovery and Interfaces, MDI, ist es gelungen, in einem einzigen Schritt alle möglichen Kombinationen aus fünf Elementen auf einem Träger unterzubringen. Zusätzlich entwickelten die Forschenden eine Methode, um das elektrokatalytische Potenzial jeder einzelnen der Kombinationen in dieser Mikromaterialbibliothek im Hochdurchsatz zu analysieren. So wollen sie die Suche nach potenziellen Katalysatoren um ein Vielfaches beschleunigen. Das Team berichtet in der Zeitschrift Advanced Materials vom 21. Dezember 2022.

Ein komplettes fünf-elementiges Materialsystem auf einem einzigen Träger

Bei der Herstellung von Materialbibliotheken sogenannter Hochentropielegierungen setzen die Bochumer Forschenden auf ein Sputterverfahren. Dabei werden alle Ausgangstoffe zeitgleich aus verschiedenen Richtungen auf einen Träger aufgebracht. Auf jeder Stelle des Trägers schlagen sich die Ausgangsstoffe in verschiedenen Mischungsverhältnissen nieder.

„Dieses Verfahren haben wir in der aktuellen Arbeit durch den Einsatz von Lochblenden so verfeinert, dass jede Materialmischung nur noch in einem winzigen Punkt von etwa 100 Mikrometer Durchmesser auf dem Träger entsteht“, beschreibt Alfred Ludwig. Dies entspricht ungefähr dem Durchmesser eines menschlichen Haars. „Durch die Miniaturisierung der Materialbibliotheken sind wir jetzt in der Lage, ein komplettes Fünf-Komponentensystem auf einem einzigen Träger unterzubringen – ein enormer Fortschritt“, ergänzt Dr. Lars Banko vom Lehrstuhl MDI, der seit kurzem das EXIST-geförderte Startup Projekt xemX leitet. Für die Untersuchung der so entstandenen Materialien nutzen die Forschenden die sogenannte Scanning Electrochemical Cell Microscopy, kurz SECCM. 

Angeklickt
  • Ausführliche Presseinformation
Veröffentlicht
Montag
16. Januar 2023
10.36 Uhr
Von
Meike Drießen (md)
Share
Teilen
Das könnte Sie auch interessieren
Rohstoff wird in einen Tiegel gelegt
Neues Grossgerät

Einheitliche Kügelchen für filigrane Metallteile

Forschungsgerät
Phaseübergänge

Materialeigenschaften besser verstehen

Funkensprühen
Materialforschung

Pulvergefüllte Drähte für flexible Legierungen

Derzeit beliebt
Blick in den Untersuchungsraum
Innovative Bildgebung

Post-Covid und Muskelschmerz

Grafik mit Elementen zur Erstsemesterbegrüßung am 9. Oktober 2023
Wintersemester 2023/2024

Start ins Studium

Benedikt Göcke, Blue Square, Veranstaltung
Religion

Existiert Gott?

 
Mehr Wissenschaft
Ressort
 
Zur Startseite
News
  • A-Z
  • N
  • K
Logo RUB
Impressum | Kontakt
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

Datenschutz
Barrierefreiheit
Impressum
Schnellzugriff
Service und Themen
Anreise und Lagepläne
Hilfe im Notfall
Stellenangebote
Social Media
Facebook
Twitter
YouTube
Instagram
Seitenanfang y Kontrast N
Impressum | Kontakt