Klaus Gerwert, Stephanie Schörner and Frederik Großerüschkamp (from left) want to use artificial intelligence to improve the diagnosis of colon cancer. © RUB, Marquard

Personalisierte Medizin KI mit Infrarot-Imaging ermöglicht präzise Darmkrebs-Diagnostik

Künstliche Intelligenz und Infrarot-Bildgebung klassifizieren Tumoren automatisch und sind schneller als bisherige Methoden.

Der immense Fortschritt im Bereich der Therapieoptionen über die vergangenen Jahre hat die Heilungschancen für Patientinnen und Patienten mit Darmkrebs deutlich verbessert. Diese neuen Ansätze wie etwa Immuntherapien erfordern jedoch eine präzise Diagnose, damit sie gezielt auf die jeweilige Person abgestimmt werden können. Forschende des Zentrums für Proteindiagnostik PRODI der Ruhr-Universität Bochum setzen Künstliche Intelligenz in Kombination mit Infrarot-Bildgebung ein, um die Therapie von Darmkrebserkrankungen optimal auf den einzelnen Patienten abzustimmen. Die Label-freie und automatisierbare Methode kann bestehende pathologische Analysen ergänzen. Das Team um Prof. Dr. Klaus Gerwert berichtet in der Zeitschrift „European Journal of Cancer“ vom 28.Januar 2023.

Tiefe Einblicke in menschliches Gewebe binnen einer Stunde

Das Team von PRODI entwickelt seit einigen Jahren ein neues Verfahren der digitalen Bildgebung: Das sogenannte Label-freie Infrarot-Imaging misst die genomische und proteomische Zusammensetzung des untersuchten Gewebes, liefert also molekulare Informationen anhand der Infrarotspektren. Diese Informationen werden mithilfe Künstlicher Intelligenz dekodiert und als Falschfarbenbilder dargestellt. Dazu setzen die Forschenden Bildanalysemethoden aus dem Bereich des Deep Learning ein.

Das Team von PRODI konnte in Zusammenarbeit mit klinischen Partnern zeigen, dass der Einsatz von tiefen neuronalen Netzwerken es ermöglicht, den sogenannten Mikrosatellitenstatus, einen prognostisch und therapeutisch relevanten Parameter, bei Darmkrebs zuverlässig zu bestimmen. Dabei durchläuft die Gewebeprobe einen standardisierten, benutzerunabhängigen, automatisierten Prozess und ermöglicht eine ortsaufgelöste differentielle Klassifizierung des Tumors innerhalb einer Stunde.

Veröffentlicht

Dienstag
14. Februar 2023
10:00 Uhr

Teilen