Newsportal - Ruhr-Universität Bochum
Das Wasser macht den Unterschied
Für die Funktion biologischer Zellen ist es wichtig, in unterschiedliche Reaktionsräume unterteilt zu sein. Das geht mittels Membranen, aber auch ohne: Die spontane Entmischung bestimmter Arten von Biomolekülen führt zur Bildung sogenannter Kondensate. Warum und unter welchen Umständen sie sich bilden, ist Gegenstand der Forschung. Durch Computersimulationen konnten Prof. Dr. Lars Schäfer und Dr. Saumyak Mukherjee aus der Theoretischen Chemie der Ruhr-Universität Bochum einen oft übersehenen Mitspieler identifizieren: Wasser. Aufgrund ihrer Menge spielen die kleinen Wassermoleküle eine genauso wichtige Rolle wie die großen Biomoleküle beim molekularen Tauziehen der Triebkräfte, die hinter der Ausbildung der Kondensate stecken. Ihre Ergebnisse beschreiben die beiden Forscher in der Fachzeitschrift Nature Communications vom 21. September 2023.
Dichtes Gedränge
Erst neuere Untersuchungen haben die Existenz der Kondensate als Reaktionsräume in Zellen belegt. „Das Innere dieser Kondensate ist unheimlich dicht gepackt, das heißt, es herrscht ein molekulares Gedränge biologischer Makromoleküle wie zum Beispiel Proteine und Nukleinsäuren“, erklärt Lars Schäfer. Da nur bestimmte Makromoleküle miteinander solche Kondensate ausbilden, können diese als spezifische Mikroreaktoren für ganz bestimmte biochemische Reaktionen fungieren, die in der Zelle ablaufen. „Daher überrascht es nicht, dass Störungen dieser Prozesse mit verschiedenen Krankheiten in Verbindung stehen“, sagt Schäfer.
David und Goliath
Warum aber bilden sich diese Kondensate in der Zelle aus, und unter welchen Umständen? „Die zu Grunde liegenden Triebkräfte liegen letzten Endes verborgen in den chemischen Wechselwirkungen zwischen den verschiedenen Molekülen in der Zelle“, sagt Saumyak Mukherjee. „Computersimulationen können da Licht ins Dunkel bringen, sogar in atomarem Detail.“ Dabei stellte sich heraus, dass ein bisher oft übersehener Mitspieler im molekularen Wechselspiel eine wichtige Rolle spielt: Wasser.
Die Wassermoleküle, die sich im dichten Gedränge im Inneren der Kondensate befinden, haben andere Eigenschaften als die Wassermoleküle außerhalb. „Die Beschränkung der Wassermoleküle im Kondensat ist eine ungünstige Triebkraft, die Freiheit der Wassermoleküle außerhalb hingegen günstig. Letztere gewinnen dieses molekulare Tauziehen – wenn auch nur knapp“, erklärt Schäfer. Die Wassermoleküle spielen also eine wichtige Rolle für die Ausbildung von biomolekularen Kondensaten in Zellen, zusätzlich zu den oft beschriebenen Wechselwirkungen zwischen den Makromolekülen wie den Proteinen. „Es ist ein bisschen wie David und Goliath“, schmunzelt Mukherjee. „Hier sind die kleinen Wassermoleküle und dort die großen Proteinmoleküle – jedoch gibt es halt sehr viele Wassermoleküle, und gemeinsam leisten sie einen Beitrag zur Triebkraft, der genauso groß ist wie der der großen Proteine.“
Die Arbeiten wurden gefördert durch die Deutsche Forschungsgemeinschaft im Rahmen des Cluster of Excellence RESOLV (EXC 2033) sowie durch die Europäische Union im Rahmen des EU Horizon 2020 Programm /Marie Skłodowska-Curie Grant 801459 – FP-RESOMUS.
Saumyak Mukherjee, Lars Schäfer: Thermodynamic forces from protein and water govern condensate formation of an intrinsically disordered protein domain, in: Nature Communications, 2023, DOI: 10.1038/s41467-023-41586-y
Prof. Dr. Lars Schäfer
Arbeitsgruppe Molekulare Simulation
Fakultät für Chemie und Biochemie
Ruhr-Universität Bochum
Tel.: +49 234 32 21582
E-Mail: lars.schaefer@ruhr-uni-bochum.de
2. Oktober 2023
12.39 Uhr